博碩士論文 106553021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:44.192.95.161
姓名 陳詩文(Shih-Wun Chen)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 高電流密度鰭式氮化鎵高電子遷移率電晶體研究
(Design of GaN High Current Density Fin High-Electron-Mobility-Transistors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗利用成長於碳化矽基板上的氮化鋁鎵/氮化鎵製作鰭式高電子遷移率電晶體,鰭式電晶體閘極不但擁有好的控制能力,隨著鰭狀尺寸的縮小能使元件電流密度大幅提升、降低閘極漏電以及讓閾值電壓往正向移動的特色,目前已有多篇論文研究指出,鰭式電晶體能使電晶體閾值電壓往正向移動。
在蕭特基閘極鰭式電晶體元件,閘極長度與鰭狀寬度皆為2微米,在碳化矽基板上電流密度與特徵電阻為1395 mA/mm、2.4 Ω-mm。而在金氧半閘極鰭式電晶體閘極長度與鰭狀寬度一樣皆為2微米,電流密度與特徵電阻有與蕭特基閘極鰭式電晶體相比則有明顯的提升至1986 mA/mm、2 Ω-mm。另外對於變溫的量測上在室溫與100℃高溫下電流密度上僅減小約23%,與蕭特基閘極鰭式電晶體減少25%相比有些微的下降,故蕭特基閘極與金氧半閘極元件從室溫到高溫的操作並無太大差異。
除了順偏特性有提升外,鰭狀結構在逆偏特性儘管部分閘極區域被蝕刻掉也不影響其特性。蕭特基閘極結構與金氧半閘極結構,閘極漏電流也由2.76 mA/mm下降至4.52 x 10-6 mA/mm,崩潰電壓由605 V提升至740 V。
故本實驗可得出金氧半閘極鰭式電晶體製作於氮化鋁鎵/氮化鎵成長於碳化矽基板上不論是對元件的順偏特性或是操作於逆偏狀態下,皆比蕭特基閘極鰭式電晶體製作於氮化鋁鎵/氮化鎵成長於碳化矽基板上表現來的優異,而在高溫環境下操作對元件來說也是可行的。
摘要(英) In this study is based on the comparison of FinFET high electron mobility transistors on AlGaN/GaN fabricated on SiC substrates. The FinFET transistor gate not only has good control capability, but also shrinks with Fin size. The characteristics of the device current density can be greatly improved, the gate leakage is reduced, and the threshold voltage is moved to the positive direction. At present, many papers have pointed out that the FinFET transistor can move the threshold voltage of the transistor to the positive direction.
In the Schottky gate FinFET transistor device, the gate length and the Fin width are both 2 μm, and the current density and characteristic resistance on the SiC substrate are 1395 mA/mm and 2.4 Ω-mm. The gate length of the metal oxide semiconductor gate FinFET transistor is 2 μm as well as the Fin width. The current density and characteristic resistance are significantly improved to 1986 mA/mm、2 Ω-mm compared with the Schottky gate FinFET transistor. In addition, for the measurement of temperature change, the current density at room temperature and 100 ° C high temperature is only reduced by about 23%, compared with the 25% reduction of Schottky gate FinFET transistor, so the Schottky gate is not much difference between the operation of the pole and the metal oxide semiconductor gate element from room temperature to high temperature.
In addition to the improvement in the forward bias characteristics, the FinFET structure does not affect its characteristics in the reverse bias characteristic although some of the gate regions are etched away. The Schottky gate structure and the metal oxide semiconductor gate structure also reduce the gate leakage current from 2.76 mA/mm to 4.52 x 10-6 mA/mm, and the breakdown voltage is increased from 605 V to 740 V.
Therefore, in this experiment, it can be concluded that the metal oxide semiconductor gate FinFET transistor is fabricated on the AlGaN/GaN grown on the SiC substrate, whether it is the forward bias characteristic of the component or the reverse bias state. The Schottky gate FinFET transistor is excellent in the growth of AlGaN/GaN on a SiC substrate, and operation in a high temperature environment is also feasible for components
.
關鍵字(中) ★ 氮化鎵
★ 氮化鋁鎵
★ 高電子遷移率電晶體
★ 鰭式電晶體
★ 高電流密度
關鍵字(英) ★ GaN
★ AlGaN
★ HEMTs
★ FinFET
★ High Current Density
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵半導體與二維電子氣的形成 3
1.3 氮化鎵高電子遷移率電晶體與鰭式電晶體文獻回顧 4
1.4 研究動機與目的 9
1.5 論文架構 9
第二章 氮化鎵高電子遷移率電晶體特性模擬 10
2.1 氮化鎵高電子遷移率電晶體的工作原理 10
2.2 氮化鎵鰭式電晶體的工作原理 11
2.3 氮化鎵電晶體元件特性模擬 11
2.3.1蕭特基閘極結構的高電子遷移率電晶體直流特性 12
2.3.2金氧半閘極結構的鰭式電晶體直流特性 16
2.4 結論 21
第三章 氮化鎵鰭式電晶體製程與特性分析 22
3.1 氮化鎵磊片結構 22
3.2 氮化鎵鰭式電晶體佈局設計與製程 23
3.3 氮化鎵鰭式電晶體直流特性 29
3.3.1 蕭特基閘極元件直流特性 31
3.3.2 金氧半閘極元件直流特性 35
3.4 結論 39
第四章 結論與未來展望 41
4.1 結論 41
4.2 未來展望 42
參考文獻 43
參考文獻 [1]A. Nakagaw, Y. Kawaguchi, and K. Nakamura, “Silicon Limit Electrical Characteristics of Power Devices and ICs,” Ieice Trans. Electron. E Ser. C, vol. 84, pp. 1462–1469, 2001.
[2]Tun-Hsiang Chang, “Design and Fabrication of AlGaN/GaN High Current Density Fin Structure High-Electron-Mobility-Ttansistors,” National Tsing Hua University,Thesis , July 2018.
[3]A. Bykhovski, B. Gelmont, and M. Shur, “The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys., vol. 74, no. 11, pp. 6734–6739, 1993.
[4]F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoç, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450–457, 2001.
[5]Xing. Lu et al, “A GaN-Based Lamb-Wave Oscillator on Silicon for High-Temperature Integrated Sensors” IEEE, vol. 23, no 6, pp. 318-320, 2013
[6]Ki. Sik Im et al, “Characteristics of GaN and AlGaN/GaN FinFETs, ” Solid-State Electron, 2014;97:66
[7]Sindhuri. Vodapally, Christoforos. G Theodorou et al,, “Comparison for 1/ƒ Noise Characteristics of AlGaN/GaN FinFET and Planar MISFET,” IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3634–3638, 2017.
[8]Dong. Seup Lee, Han. Wang et al,, “Nanowire Channel InAlN/GaN HEMTs With High Linearity of gm and ƒT,” IEEE Trans. Electron Devices, vol. 34, no. 8, pp. 969–971, 2013.
[9]David. F Brown, et al, “Self-Aligned AlGaN/GaN FinFETs,” IEEE Electron Devices Lett, vol. 38, no. 10, pp. 1445–1447, 2017.
[10]Hong. Zhou, Xiabing.Lou, et al, “Enhancement-Mode AlGaN/GaN Fin-MOSHEMTs on Si Substrate With Atomic Layer Epitaxy MgCaO,” IEEE Electron Devices Lett, vol. 38, no. 9, pp. 1294–1297, 2017.
[11]Kailin. Ren, Yung. C Liang, et al, “Compact Physical Models for AlGaN/GaN MIS-FinFET on Threshold Voltage and Saturation Current,” IEEE Trans. Electron Devices, vol. 65, no. 4, pp. 1348–1354, 2018.

[12]Chia-Hsun. Wu, Jian-You. Chen, et al, “Normally-Off Tri-Gate GaN MIS-HEMTs with 0.76 mΩ·cm2 Specific On-Resistance for Power Device Applications,” IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3441–3446, 2019.
[13]黃懷諄,「以閘極斜場板與傳統場板之結合改善氮化鋁鎵/氮化鎵高電子遷移率電晶體之崩潰電壓」,國立雲林科技大學電子工程系,碩士論文,民國106年。
指導教授 林銀議 辛裕明(Yin-Yi Lin Yue-Ming Hsin) 審核日期 2019-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明