博碩士論文 106582003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.145.71.240
姓名 鍾佳儒(Chia-Ru Chung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用機器學習演算法於質譜數據辨識細菌抗藥性之系統開發
(Development of a Predictive System for Identification of Antibiotic Resistant Bacteria Based on Mass Spectrometry Data Using Machine Learning Algorithms)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 不當使用抗生素導致細菌抗藥性發展快速,而現行微生物檢驗方法提供細菌對抗生素有無抗藥性之抗生素藥敏檢驗(Antibiotic Susceptibility Test)需要數天,無法快速提供臨床醫師抗生素使用之指引,導致無法立即正確施用,為引發抗藥性危機之可能原因之一。近年來,臨床微生物檢驗已廣泛採用基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF MS)進行菌種鑑定,不須繁雜且耗時的實驗,即能取得高準確度之菌種辨認。儘管已有研究表明可利用基質輔助雷射脫附游離飛行時間質譜儀進行細菌菌株之分型或辨識其抗藥性,然而,目前仍缺乏基於大量細菌質譜數據辨識抗藥性之預測系統。本研究主要目的為基於質譜數據與藥敏檢驗結果,利用機器學習方法建構辨識細菌抗藥性之預測系統,此系統首先整合合作醫院多年蒐集之細菌質譜與其抗生素藥敏檢驗報告數據,建置整合性資料庫,以利針對不同細菌建置模型,其中,為取得質譜之數值,進行質譜數據之前處理,接著,開發不同方法解決質譜峰值偏移問題,並且,藉由溶血性葡萄球菌之菌株分型(Strain Typing of Staphylococcus haemolyticus)與耐甲氧西林金黃色葡萄球菌(Methicillin-resistant Staphylococcus aureus)之辨識分析探究適用性,針對溶血性葡萄球菌菌株分型採用基於統計檢定的方法估計質譜峰值對齊時的參考光譜,並利用機器學習演算法建構菌株分型分類器,以隨機森林建構之模型達0.866之準確率;針對耐甲氧西林金黃色葡萄球菌辨識,對4858 株金黃色葡萄球菌,以分箱方法(Binning Method)解決質譜峰值之對齊,採用機器學習演算法建構辨識模型,獨立測試結果顯示受試者操作曲線下面積(Receiver Operating Characteristic Curve)達0.8450;最後,我們針對臨床常見六種細菌建構其抗藥性模型並建置預測系統,XBugHunter,此預測系統應用於臨床之結果顯示,辨識耐甲氧西林金黄色葡萄球菌以及多重抗藥性鮑氏不動桿菌(Acinetobacter baumannii)準確率皆超過90%,相較採用現行抗生素藥敏試驗之流程,利用XBugHunter預測結果平均可減少35.72小時之處理時間,此外,在金黃色葡萄球菌菌血症患者中,採用XBugHunter之實驗組患者28天內死亡率之相對風險降低了38.4%,透過開發之辨識細菌抗藥性預測系統,有助於即時施用適當藥物,以達到減低死亡率、避免抗藥性,以及縮短住院天數等效益。
摘要(英) Improper use of antibiotics has led to the rapid development of antibiotic resistance. The current antibiotics susceptibility test (AST) which provides information of microorganism against antibiotics in clinical microbiology laboratory would spend several days. Unable to provide timely accurate prescription of antibiotics is a possible reason to the emergence of resistant bacteria. In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used in clinical microbiology laboratories for rapid bacterial species identification. High accuracy bacterial species identification can be achieved without complicated and time-consuming experimental steps. Although several studies have shown that MALDI-TOF MS can be used for rapid AST, it is lack of a predictive system for identifying bacterial resistance based on mass spectrometry data. The purpose of this study is to develop a predictive system using machine learning algorithms to identify antibiotic resistant bacteria based on MALDI-TOF MS data and AST reports. First, we integrated different databases including bacterial mass spectral databases, AST report databases, and strain types databases collected from our cooperative hospitals. To integrate and obtain the value of the mass spectrum, we preprocessed the mass spectrum data. Then, we developed three methods to deal with peak shifting problems, and we explored the applicability through analysis of strain typing of Staphylococcus haemolyticus and identification of methicillin-resistant Staphylococcus aureus (MRSA). In the strain typing of application, we employed a statistical test to estimate the reference spectrum when solving peak shifting problems. We then used different machine learning algorithms to construct strain typing classifiers. The accuracy of the classifier constructed by random forest algorithm was 0.866. In the identification of MRSA application, we used binning method to deal with peak alignment issues. A large scale dataset which is different from studies in the literature was then used to construct models for identification of MRSA. Similarly, we used several machine learning algorithms to train and test the models. From the experimental results, our best model based on random forest algorithm achieved maximum area under the receiver operating characteristic curve of 0.8450 on the independent testing dataset. Finally, from these experiences, we implemented a predictive clinical system, XBugHunter, to identify antibiotic resistant bacteria for six common bacterial infections. The accuracies of clinical deployment for identifying MRSA and multi-drug resistant Acinetobacter baumannii were all higher than 90%. Compared with the current process of AST, the use of XBugHunter prediction can reduce the processing time or turn-around-time by an average of 35.72 hours. In addition, among patients with Staphylococcus aureus bacteremia, the relative risk of mortality within 28 days of the experimental group using XBugHunter was reduced by 38.4%. The predictive system for identifying bacterial resistance can provide clinicians with instant predicted ASTs, which helps clinicians prescribe appropriate antibiotics to achieve the benefits of reducing mortality, avoiding antibiotic resistance, and shortening the days in hospital.
關鍵字(中) ★ 抗生素藥敏檢驗
★ 基質輔助雷射脫附游離飛行時間質譜儀
★ 抗藥性
★ 多重抗藥性
★ 機器學習
關鍵字(英) ★ antibiotic susceptibility test
★ matrix-assisted laser desorption ionization-time of flight mass spectrometry
★ antibiotic resistance
★ multidrug resistance
★ machine learning
論文目次 中文摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of Figures vi
List of Tables ix
List of Abbreviations xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 3
1.3 Machine Learning Algorithms 4
1.4 Related Works 7
1.5 Motivation and Research Goal 10
Chapter 2 Materials and Methods 11
2.1 Data Collection 13
2.2 Preprocessing of Mass Spectrometry Data 14
2.2.1 Preprocessing by FlexAnalysis 14
2.2.2 Preprocessing by R 15
2.3 Summary Statistics of Our Database 17
2.4 Peak Distributions for Resistant and Susceptible Data 19
2.5 Feature Extraction for Mass Spectrometry Data 20
2.5.1 Statistical Test-based Method 20
2.5.2 Binning Method 23
2.5.3 Kernel Density Estimation Method 24
2.6 Development of Models by Machine Learning Algorithms 25
2.7 Feature Selection Methods 26
2.8 Evaluation Metrics 28
2.9 Implementation of a Predictive System in Clinical Microbiology Laboratory 29
Chapter 3 Results 30
3.1 Strain Typing of Staphylococcus haemolyticus 30
3.1.1 Statistical Analysis 30
3.1.2 A Summary of Statistical Data 31
3.1.3 Determination of Tolerance Values 32
3.1.4 Results of Feature Selection 36
3.1.5 Differentiation between Strain Type 3 and Strain Type 42 38
3.1.6 Summary of Strain Typing of Staphylococcus haemolyticus 40
3.2 Identification of Methicillin-resistant Staphylococcus aureus 40
3.2.1 Statistics of Training and Independent Testing Datasets 41
3.2.2 Comparisons of Peak Distributions between Methicillin-resistant and Methicillin-susceptible Staphylococcus aureus on Mass Spectra 42
3.2.3 Performance of Predictive Models and Independent Testing 44
3.2.4 Investigation of Informative Peaks 47
3.2.5 Summary of Methicillin-Resistant Staphylococcus aureus 51
3.3 A Predictive System in Clinical Microbiology Laboratory to Identify Antibiotic Resistant Bacteria 52
3.3.1 Data and Prediction Models for Deploying a System 52
3.3.2 Clinical Impacts Estimation 62
3.3.3 Prospective Evaluation 64
Chapter 4 Discussions and Conclusions 65
Bibliographies 67
Appendix 77
參考文獻 1. Kohanski MA, Dwyer DJ, Collins JJ. How Antibiotics Kill Bacteria: From Targets to Networks, Nature Reviews: Microbiology 2010;8:423-435.
2. Tagliabue A, Rappuoli R. Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top, Frontiers in Immunology 2018;9:1068.
3. Willyard C. The Drug-Resistant Bacteria That Pose the Greatest Health Threats, Nature 2017;543:15.
4. Weis CV, Jutzeler CR, Borgwardt K. Machine Learning for Microbial Identification and Antimicrobial Susceptibility Testing on Maldi-Tof Mass Spectra: A Systematic Review, Clinical Microbiology and Infection 2020;26:1310-1317.
5. Burnham CD, Leeds J, Nordmann P, O′Grady J, Patel J. Diagnosing Antimicrobial Resistance, Nature Reviews: Microbiology 2017;15:697-703.
6. MacCannell D. Bacterial Strain Typing, Clinics in Laboratory Medicine 2013;33:629-650.
7. Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, Germini D, Medici M-C, Chezzi C, De Conto F. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (Maldi-Tof) Mass Spectrometry Applied to Virus Identification, Scientific Reports 2014;4:6803.
8. Burckhardt I, Zimmermann S. Susceptibility Testing of Bacteria Using Maldi-Tof Mass Spectrometry, Frontiers in Microbiology 2018;9:1744.
9. Vrioni G, Tsiamis C, Oikonomidis G, Theodoridou K, Kapsimali V, Tsakris A. Maldi-Tof Mass Spectrometry Technology for Detecting Biomarkers of Antimicrobial Resistance: Current Achievements and Future Perspectives, Ann Transl Med 2018;6:240.
10. Wieser A, Schneider L, Jung J, Schubert S. Maldi-Tof Ms in Microbiological Diagnostics-Identification of Microorganisms and Beyond (Mini Review), Applied Microbiology and Biotechnology 2012;93:965-974.
11. Singhal N, Kumar M, Kanaujia PK, Virdi JS. Maldi-Tof Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis, Frontiers in Microbiology 2015;6:791.
12. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X. Maldi-Tof Mass Spectrometry Tools for Bacterial Identification in Clinical Microbiology Laboratory, Clinical Biochemistry 2011;44:104-109.
13. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. Maldi-Tof-Mass Spectrometry Applications in Clinical Microbiology, Future Microbiology 2010;5:1733-1754.
14. Doern CD, Butler-Wu SM. Emerging and Future Applications of Matrix-Assisted Laser Desorption Ionization Time-of-Flight (Maldi-Tof) Mass Spectrometry in the Clinical Microbiology Laboratory: A Report of the Association for Molecular Pathology, Journal of Molecular Diagnostics 2016;18:789-802.
15. Oviano M, Bou G. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond, Clinical Microbiology Reviews 2019;32:e00037-00018.
16. Jang KS, Kim YH. Rapid and Robust Maldi-Tof Ms Techniques for Microbial Identification: A Brief Overview of Their Diverse Applications, Journal of Microbiology 2018;56:209-216.
17. Hosseini S, Martinez-Chapa SO. Principles and Mechanism of Maldi-Tof-Ms Analysis. Fundamentals of Maldi-Tof-Ms Analysis. Singapore: Springer Singapore, 2017, 1-19.
18. Ryzhov V, Fenselau C. Characterization of the Protein Subset Desorbed by Maldi from Whole Bacterial Cells, Analytical Chemistry 2001;73:746-750.
19. Wang Z, Russon L, Li L, Roser DC, Long SR. Investigation of Spectral Reproducibility in Direct Analysis of Bacteria Proteins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Rapid Communications in Mass Spectrometry 1998;12:456-464.
20. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The Rapid Identification of Intact Microorganisms Using Mass Spectrometry, Nature Biotechnology 1996;14:1584-1586.
21. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO. Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns Using Matrix-Assisted Laser Desorption/Ionization with Time-of-Flight Mass Spectrometry, Rapid Communications in Mass Spectrometry 1996;10:1227-1232.
22. Wang HY, Lee TY, Tseng YJ, Liu TP, Huang KY, Chang YT, Chen CH, Lu JJ. A New Scheme for Strain Typing of Methicillin-Resistant Staphylococcus Aureus on the Basis of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry by Using Machine Learning Approach, PloS One 2018;13:e0194289.
23. Bizzini A, Durussel C, Bille J, Greub G, Prod′hom G. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Bacterial Strains Routinely Isolated in a Clinical Microbiology Laboratory, Journal of Clinical Microbiology 2010;48:1549-1554.
24. Wang HY, Li WC, Huang KY, Chung CR, Horng JT, Hsu JF, Lu JJ, Lee TY. Rapid Classification of Group B Streptococcus Serotypes Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Machine Learning Techniques, BMC Bioinformatics 2019;20:703.
25. Wang HY, Lien F, Liu TP, Chen CH, Chen CJ, Lu JJ. Application of a Maldi-Tof Analysis Platform (Clinprotools) for Rapid and Preliminary Report of Mrsa Sequence Types in Taiwan, PeerJ 2018;6:e5784.
26. Wang HY, Chen CH, Lee TY, Horng JT, Liu TP, Tseng YJ, Lu JJ. Rapid Detection of Heterogeneous Vancomycin-Intermediate Staphylococcus Aureus Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight: Using a Machine Learning Approach and Unbiased Validation, Frontiers in Microbiology 2018;9.
27. Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, Aepfelbacher M, Christner M. Maldi-Tof Ms Fingerprinting Allows for Discrimination of Major Methicillin-Resistant Staphylococcus Aureus Lineages, International Journal of Medical Microbiology 2011;301:64-68.
28. Croxatto A, Prod′hom G, Greub G. Applications of Maldi-Tof Mass Spectrometry in Clinical Diagnostic Microbiology, FEMS Microbiology Reviews 2012;36:380-407.
29. Camoez M, Sierra JM, Dominguez MA, Ferrer-Navarro M, Vila J, Roca I. Automated Categorization of Methicillin-Resistant Staphylococcus Aureus Clinical Isolates into Different Clonal Complexes by Maldi-Tof Mass Spectrometry, Clinical Microbiology and Infection 2016;22:161 e161-161 e167.
30. Sandrin TR, Goldstein JE, Schumaker S. Maldi Tof Ms Profiling of Bacteria at the Strain Level: A Review, Mass Spectrometry Reviews 2013;32:188-217.
31. Nomura F. Proteome-Based Bacterial Identification Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (Maldi-Tof Ms): A Revolutionary Shift in Clinical Diagnostic Microbiology, Biochimica et Biophysica Acta 2015;1854:528-537.
32. Cox CR, Jensen KR, Saichek NR, Voorhees KJ. Strain-Level Bacterial Identification by Ceo2-Catalyzed Maldi-Tof Ms Fatty Acid Analysis and Comparison to Commercial Protein-Based Methods, Scientific Reports 2015;5:10470.
33. Mather CA, Werth BJ, Sivagnanam S, SenGupta DJ, Butler-Wu SM. Rapid Detection of Vancomycin Intermediate Staphylococcus Aureus (Visa) by Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (Maldi-Tof Ms), Journal of Clinical Microbiology 2016:JCM. 02428-02415.
34. O′Driscoll T, Crank CW. Vancomycin-Resistant Enterococcal Infections: Epidemiology, Clinical Manifestations, and Optimal Management, Infect Drug Resist 2015;8:217-230.
35. Lasch P, Fleige C, Stammler M, Layer F, Nubel U, Witte W, Werner G. Insufficient Discriminatory Power of Maldi-Tof Mass Spectrometry for Typing of Enterococcus Faecium and Staphylococcus Aureus Isolates, Journal of Microbiological Methods 2014;100:58-69.
36. Kostrzewa M, Sparbier K, Maier T, Schubert S. Maldi-Tof Ms: An Upcoming Tool for Rapid Detection of Antibiotic Resistance in Microorganisms, Proteomics: Clinical Applications 2013;7:767-778.
37. Wu LC, Hsieh PH, Horng JT, Jou YJ, Lin CD, Cheng KF, Lin CW, Chen SY. Improved Candidate Biomarker Detection Based on Mass Spectrometry Data Using the Hilbert-Huang Transform, Protein Pept Lett 2012;19:120-129.
38. López Fernández H, Reboiro-Jato M, Pérez Rodríguez JA, Fdez-Riverola F, Glez-Peña D. Implementing Effective Machine Learning-Based Workflows for the Analysis of Mass Spectrometry Data, Journal of Integrated OMICS 2016;6.
39. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.
40. Lo-Ciganic WH, Huang JL, Zhang HH, Weiss JC, Wu Y, Kwoh CK, Donohue JM, Cochran G, Gordon AJ, Malone DC, Kuza CC, Gellad WF. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk among Medicare Beneficiaries with Opioid Prescriptions, JAMA Netw Open 2019;2:e190968.
41. Tseng YJ, Huang CE, Wen CN, Lai PY, Wu MH, Sun YC, Wang HY, Lu JJ. Predicting Breast Cancer Metastasis by Using Serum Biomarkers and Clinicopathological Data with Machine Learning Technologies, International Journal of Medical Informatics 2019;128:79-86.
42. Wang HY, Chang SC, Lin WY, Chen CH, Chiang SH, Huang KY, Chu BY, Lu JJ, Lee TY. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing, Journal of Computational Biology 2018;25:1347-1360.
43. Wang HY, Hsieh CH, Wen CN, Wen YH, Chen CH, Lu JJ. Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers, PloS One 2016;11:e0158285.
44. Wang HY, Hung CC, Chen CH, Lee TY, Huang KY, Ning HC, Lai NC, Tsai MH, Lu LC, Tseng YJ, Lu JJ. Increase Trichomonas Vaginalis Detection Based on Urine Routine Analysis through a Machine Learning Approach, Scientific Reports 2019;9:11074.
45. Lin WY, Chen CH, Tseng YJ, Tsai YT, Chang CY, Wang HY, Chen CK. Predicting Post-Stroke Activities of Daily Living through a Machine Learning-Based Approach on Initiating Rehabilitation, International Journal of Medical Informatics 2018;111:159-164.
46. Wong JWH, Cagney G, Cartwright HM. Specalign – Processing and Alignment of Mass Spectra Datasets, Bioinformatics 2005;21.
47. Mantini D, Petrucci F, Pieragostino D, Del Boccio P, Di Nicola M, Di Ilio C, Federici G, Sacchetta P, Comani S, Urbani A. Limpic: A Computational Method for the Separation of Protein Maldi-Tof-Ms Signals from Noise, BMC Bioinformatics 2007;8:101.
48. Gibb S, Strimmer K. Maldiquant: A Versatile R Package for the Analysis of Mass Spectrometry Data, Bioinformatics 2012;28:2270-2271.
49. Lopez-Fernandez H, Santos HM, Capelo JL, Fdez-Riverola F, Glez-Pena D, Reboiro-Jato M. Mass-Up: An All-in-One Open Software Application for Maldi-Tof Mass Spectrometry Knowledge Discovery, BMC Bioinformatics 2015;16:318.
50. Walker J, Fox AJ, Edwards-Jones V, Gordon DB. Intact Cell Mass Spectrometry (Icms) Used to Type Methicillin-Resistant Staphylococcus Aureus: Media Effects and Inter-Laboratory Reproducibility, Journal of Microbiological Methods 2002;48:117-126.
51. Lin HC, Lu JJ, Lin LC, Ho CM, Hwang KP, Liu YC, Chen CJ. Identification of a Proteomic Biomarker Associated with Invasive St1, Serotype Vi Group B Streptococcus by Maldi-Tof Ms, Journal of Microbiology, Immunology, and Infection. Wei Mian Yu Gan Ran Za Zhi 2019;52:81-89.
52. Chen SY, Lee H, Teng SH, Wang XM, Lee TF, Huang YC, Liao CH, Teng LJ, Hsueh PR. Accurate Differentiation of Novel Staphylococcus Argenteus from Staphylococcus Aureus Using Maldi-Tof Ms, Future Microbiology 2018;13:997-1006.
53. Lu JJ, Tsai FJ, Ho CM, Liu YC, Chen CJ. Peptide Biomarker Discovery for Identification of Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus Aureus Strains by Maldi-Tof, Analytical Chemistry 2012;84:5685-5692.
54. Asakura K, Azechi T, Sasano H, Matsui H, Hanaki H, Miyazaki M, Takata T, Sekine M, Takaku T, Ochiai T, Komatsu N, Shibayama K, Katayama Y, Yahara K. Rapid and Easy Detection of Low-Level Resistance to Vancomycin in Methicillin-Resistant Staphylococcus Aureus by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, PloS One 2018;13:e0194212.
55. Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, Hamilton B, Venter D. Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry to Identify Vancomycin-Resistant Enterococci and Investigate the Epidemiology of an Outbreak, Journal of Clinical Microbiology 2012;50:2918-2931.
56. Sauget M, Bertrand X, Hocquet D. Rapid Antibiotic Susceptibility Testing on Blood Cultures Using Maldi-Tof Ms, PloS One 2018;13:e0205603.
57. De Carolis E, Paoletti S, Nagel D, Vella A, Mello E, Palucci I, De Angelis G, D’Inzeo T, Sanguinetti M, Posteraro B. A Rapid Diagnostic Workflow for Cefotaxime-Resistant Escherichia Coli and Klebsiella Pneumoniae Detection from Blood Cultures by Maldi-Tof Mass Spectrometry, PloS One 2017;12:e0185935.
58. Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, Kostrzewa M, Schubert S. Evaluation of a Semi-Quantitative Maldi-Tof Ms Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures, Journal of Clinical Microbiology 2016.
59. Liu X, Su T, Hsu Y-MS, Yu H, Yang HS, Jiang L, Zhao Z. Rapid Identification and Discrimination of Methicillin-Resistant Staphylococcus Aureus Strains Via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Rapid Communications in Mass Spectrometry 2021;35:e8972.
60. Kim JM, Kim I, Chung SH, Chung Y, Han M, Kim JS. Rapid Discrimination of Methicillin-Resistant Staphylococcus Aureus by Maldi-Tof Ms, Pathogens 2019;8:214.
61. Tang W, Ranganathan N, Shahrezaei V, Larrouy-Maumus G. Maldi-Tof Mass Spectrometry on Intact Bacteria Combined with a Refined Analysis Framework Allows Accurate Classification of Mssa and Mrsa, PloS One 2019;14:e0218951.
62. Bai J, Fan Z, Zhang L, Xu X, Zhang Z. Classification of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus Aureus Using an Improved Genetic Algorithm for Feature Selection Based on Mass Spectra. In: Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology. 2017, p. 57-63.
63. Sogawa K, Watanabe M, Ishige T, Segawa S, Miyabe A, Murata S, Saito T, Sanda A, Furuhata K, Nomura F. Rapid Discrimination between Methicillin-Sensitive and Methicillin-Resistant Staphylococcus Aureus Using Maldi-Tof Mass Spectrometry, Biocontrol Sci 2017;22:163-169.
64. Huang TS, Lee SSJ, Lee CC, Chang FC. Detection of Carbapenem-Resistant Klebsiella Pneumoniae on the Basis of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry by Using Supervised Machine Learning Approach, PloS One 2020;15:e0228459.
65. Weis C, Cuénod A, Rieck B, Llinares-López F, Dubuis O, Graf S, Lang C, Oberle M, Soegaard KK, Osthoff M. Direct Antimicrobial Resistance Prediction from Maldi-Tof Mass Spectra Profile in Clinical Isolates through Machine Learning, bioRxiv 2020.
66. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat Eskape Pathogens in the Era of Antimicrobial Resistance: A Review, Frontiers in Microbiology 2019;10:539.
67. Panda S, Jena S, Sharma S, Dhawan B, Nath G, Singh DV. Identification of Novel Sequence Types among Staphylococcus Haemolyticus Isolated from Variety of Infections in India, PloS One 2016;11:e0166193.
68. Jolley KA, Bray JE, Maiden MC. Open-Access Bacterial Population Genomics: Bigsdb Software, the Pubmlst. Org Website and Their Applications, Wellcome open research 2018;3.
69. Raymond M, Rousset F. An Exact Test for Population Differentiation, Evolution 1995;49:1280-1283.
70. Sheather SJ, Jones MC. A Reliable Data‐Based Bandwidth Selection Method for Kernel Density Estimation, Journal of the Royal Statistical Society: Series B (Methodological) 1991;53:683-690.
71. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models Via Coordinate Descent, Journal of statistical software 2010;33:1.
72. Chang C-C, Lin C-J. Libsvm: A Library for Support Vector Machines, ACM transactions on intelligent systems and technology (TIST) 2011;2:27.
73. Knerr S, Personnaz L, Dreyfus G. Single-Layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. Neurocomputing. Springer, 1990, 41-50.
74. Liaw A, Wiener M. Classification and Regression by Randomforest, R news 2002;2:18-22.
75. Breiman L. Random Forests, Machine learning 2001;45:5-32.
76. Wright MN, Ziegler A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, arXiv preprint arXiv:1508.04409 2015.
77. Hechenbichler K, Schliep K. Weighted K-Nearest-Neighbor Techniques and Ordinal Classification 2004.
78. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C-C, Lin C-C, Meyer MD. Package ‘E1071’, R J 2019.
79. Kao HJ, Weng SL, Huang KY, Kaunang FJ, Hsu JB, Huang CH, Lee TY. Mdd-Carb: A Combinatorial Model for the Identification of Protein Carbonylation Sites with Substrate Motifs, BMC Systems Biology 2017;11:137.
80. Bui VM, Lu CT, Ho TT, Lee TY. Mdd-Soh: Exploiting Maximal Dependence Decomposition to Identify S-Sulfenylation Sites with Substrate Motifs, Bioinformatics 2016;32:165-172.
81. Holte RC. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets, Machine Learning 1993;11:63-90.
82. Lee TY, Hsu JB, Chang WC, Wang TY, Hsu PC, Huang HD. A Comprehensive Resource for Integrating and Displaying Protein Post-Translational Modifications, BMC Research Notes 2009;2:111.
83. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. Proc: An Open-Source Package for R and S+ to Analyze and Compare Roc Curves, BMC Bioinformatics 2011;12:77.
84. Bui VM, Weng SL, Lu CT, Chang TH, Weng JT, Lee TY. Sohsite: Incorporating Evolutionary Information and Physicochemical Properties to Identify Protein S-Sulfenylation Sites, BMC Genomics 2016;17 Suppl 1:9.
85. Chung CR, Kuo TR, Wu LC, Lee TY, Horng JT. Characterization and Identification of Antimicrobial Peptides with Different Functional Activities, Briefings in Bioinformatics 2019.
86. Becker K, Heilmann C, Peters G. Coagulase-Negative Staphylococci, Clinical Microbiology Reviews 2014;27:870-926.
87. Hiramatsu K. Vancomycin Resistance in Staphylococci, Drug resistance updates 1998;1:135-150.
88. Froggatt JW, Johnston J, Galetto DW, Archer G. Antimicrobial Resistance in Nosocomial Isolates of Staphylococcus Haemolyticus, Antimicrobial Agents and Chemotherapy 1989;33:460-466.
89. van Duin D, Strassle PD, DiBiase LM, Lachiewicz AM, Rutala WA, Eitas T, Maile R, Kanamori H, Weber DJ, Cairns BA. Timeline of Health Care–Associated Infections and Pathogens after Burn Injuries, American Journal of Infection Control 2016;44:1511-1516.
90. Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis, Journal of the American Statistical Association 1952;47:583-621.
91. Kendall MG. A New Measure of Rank Correlation, Biometrika 1938;30:81-93.
92. Hand DJ, Till RJ. A Simple Generalisation of the Area under the Roc Curve for Multiple Class Classification Problems, Machine Learning 2001;45:171-186.
93. López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F. Optimalcutpoints: An R Package for Selecting Optimal Cutpoints in Diagnostic Tests, Journal of Statistical Software 2014;61:1-36.
94. Washer P, Joffe HJSS, Medicine. The “Hospital Superbug”: Social Representations of Mrsa 2006;63:2141-2152.
95. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of Mortality Associated with Methicillin-Resistant and Methicillin-Susceptible Staphylococcus Aureus Bacteremia: A Meta-Analysis, Clinical Infectious Diseases 2003;36:53-59.
96. Nathwani D, Morgan M, Masterton RG, Dryden M, Cookson BD, French G, Lewis D, British Society for Antimicrobial Chemotherapy Working Party on Community-onset MI. Guidelines for Uk Practice for the Diagnosis and Management of Methicillin-Resistant Staphylococcus Aureus (Mrsa) Infections Presenting in the Community, Journal of Antimicrobial Chemotherapy 2008;61:976-994.
97. Hallin M, Maes N, Byl B, Jacobs F, De Gheldre Y, Struelens MJ. Clinical Impact of a Pcr Assay for Identification of Staphylococcus Aureus and Determination of Methicillin Resistance Directly from Blood Cultures, Journal of Clinical Microbiology 2003;41:3942-3944.
98. Rolain JM, Mallet MN, Fournier PE, Raoult D. Real-Time Pcr for Universal Antibiotic Susceptibility Testing, Journal of Antimicrobial Chemotherapy 2004;54:538-541.
99. Josten M, Dischinger J, Szekat C, Reif M, Al-Sabti N, Sahl HG, Parcina M, Bekeredjian-Ding I, Bierbaum G. Identification of Agr-Positive Methicillin-Resistant Staphylococcus Aureus Harbouring the Class a Mec Complex by Maldi-Tof Mass Spectrometry, International Journal of Medical Microbiology 2014;304:1018-1023.
100. Josten M, Reif M, Szekat C, Al-Sabti N, Roemer T, Sparbier K, Kostrzewa M, Rohde H, Sahl H-G, Bierbaum G. Analysis of the Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrum of Staphylococcus Aureus Identifies Mutations That Allow Differentiation of the Main Clonal Lineages, Journal of Clinical Microbiology 2013;51:1809-1817.
101. Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus Aureus and Determination of Its Methicillin Resistance by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Analytical Chemistry 2002;74:5487-5491.
102. Majcherczyk PA, McKenna T, Moreillon P, Vaudaux P. The Discriminatory Power of Maldi-Tof Mass Spectrometry to Differentiate between Isogenic Teicoplanin-Susceptible and Teicoplanin-Resistant Strains of Methicillin-Resistant Staphylococcus Aureus, FEMS Microbiology Letters 2006;255:233-239.
103. Rice LB. Progress and Challenges in Implementing the Research on Eskape Pathogens, Infection Control and Hospital Epidemiology 2010;31 Suppl 1:S7-10.
104. Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in Eskape Pathogens, Biomed Res Int 2016;2016:2475067.
105. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF, Group S. Stard 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies, BMJ 2015;351:h5527.
106. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (Tripod): The Tripod Statement, BMJ 2015;350:g7594.
107. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-Learn: Machine Learning in Python, J. Mach. Learn. Res. 2011;12:2825–2830.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明