參考文獻 |
[1] Ö. Köksal and B. Tekinerdogan, “Obstacles in Data Distribution Service Middleware: A Systematic Review,” Future Gener. Comput. Syst., vol. 68, pp. 191–210, Mar. 2017, doi: 10.1016/j.future.2016.09.020.
[2] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for Internet of Things: A Survey,” IEEE Internet Things J., vol. 3, no. 1, pp. 70–95, Feb. 2016, doi: 10.1109/JIOT.2015.2498900.
[3] D. C. Schmidt and H. Van’T Hag, “Addressing the challenges of mission-critical information management in next-generation net-centric pub/sub systems with OpenSplice DDS,” in 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL: IEEE, Apr. 2008, pp. 1–8. doi: 10.1109/IPDPS.2008.4536567.
[4] S. Fang, L. Huang, and Z. Li, “DDS‐based protocol‐compatible communication platform for mining power system,” IET Commun., vol. 14, no. 1, pp. 158–164, Jan. 2020, doi: 10.1049/iet-com.2019.0608.
[5] C.-H. Lee and Y.-T. Ciou, “Software-Defined Ultra-reliable Industrial Traffic Mechanism based on Data Distribution Service,” in 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA: IEEE, Jan. 2021, pp. 1–2. doi:10.1109/ICCE50685.2021.9427744.
[6] Object Managemet Group, “OMG Data Distribution Service (DDS) Version 1.4.” Object Management Group. [Online]. Available: https://www.omg.org/spec/DDS/1.4/PDF
[7]“Vortex OpenSplice.” ADLINK Technology. [Online]. Available: https://www.adlinktech.com/en/vortex-opensplice-data-distribution-service
[8] A. Corsaro, “DDS QoS Unleashed.” [Online]. Available: https://www.slideshare.net/Angelo.Corsaro/ dds-qos-unleashed
[9] Real Technology Inc., “RTI Connext DDS Core Libraries User’s Manual Version 5.2.3.” Real Technology Inc. [Online]. Available: https://community.rti.com/static/documentation/connextdds/5.2.3/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_UsersManual.pdf
[10] eProsima, “eProsima Fast DDS Documentation.” [Online]. Available: https://fast-dds.docs.eprosima.com/en/latest/
[11] OpenDDS, “OpenDDS.” [Online]. Available: https://opendds.readthedocs.io/en/latest-release/
[12] Eclipse, “Eclipse CycloneDDS 0.11.0.” [Online]. Available: https://cyclonedds.io/docs/cyclonedds/latest/about_dds/eclipse_cyclone_dds.html
[13] A. M. Hinze and A. Buchmann, Eds., Principles and Applications of Distributed Event-Based Systems: in Advances in Systems Analysis, Software Engineering, and High Performance Computing. IGI Global, 2010. doi: 10.4018/978-1-60566-697-6.
[14] A. Mathur, P. Suman, H. Punj, and S. Maiti, “DDS Quality of Service optimization for JDL based naval C4I systems,” in 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida: IEEE, Oct. 2017, pp. 85–89. doi: 10.1109/RDCAPE.2017.8358245.
[15] J. Fernandez, B. Allen, P. Thulasiraman, and B. Bingham, “Performance Study of the Robot Operating System 2 with QoS and Cyber Security Settings,” in 2020 IEEE International Systems Conference (SysCon), Montreal, QC, Canada: IEEE, Aug. 2020, pp. 1–6. doi: 10.1109/SysCon47679.2020.9275872.
[16] J. Park, R. Delgado, and B. W. Choi, “Real-Time Characteristics of ROS 2.0 in Multiagent Robot Systems: An Empirical Study,” IEEE Access, vol. 8, pp. 154637–154651, 2020, doi: 10.1109/ACCESS.2020.3018122.
[17] A. T. Park, N. Peck, R. Dill, D. D. Hodson, M. R. Grimaila, and W. C. Henry, “Quantifying DDS-cerberus network control overhead,” J. Supercomput., vol. 79, no. 4, pp. 3616–3642, Mar. 2023, doi: 10.1007/s11227-022-04770-3.
[18] M.-Y. Son, D.-S. Kim, and J.-H. Cha, “Efficient DDS monitoring system for large amount of data,” in 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia: IEEE, Jun. 2018, pp. 1–4. doi: 10.1109/WFCS.2018.8402384.
[19] M.-Y. Son, J.-H. Cha, and D.-S. Kim, “Priority-based Parallel Processing Scheme of Mass Data for Real-time DDS Monitoring System,” in 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia: IEEE, Jul. 2019, pp. 541–543. doi: 10.1109/ICUFN.2019.8806097.
[20] A. Tolk, O. Valverde, and S. McCann, “Applicability of OMG’s Data Distribution Services to Enhance Simulation Interoperability,” presented at the Simulation Innovation Workshop, Orlando, 2022.
[21] J. Hoffert, D. Schmidt, and A. Gokhale, “A QoS policy configuration modeling language for publish/subscribe middleware platforms,” in Proceedings of the 2007 inaugural international conference on Distributed event-based systems, Toronto Ontario Canada: ACM, Jun. 2007, pp. 140–145. doi: 10.1145/1266894.1266922.
[22] M. García-Valls, J. Domínguez-Poblete, I. E. Touahria, and C. Lu, “Integration of Data Distribution Service and distributed partitioned systems,” J. Syst. Archit., vol. 83, pp. 23–31, Feb. 2018, doi:10.1016/j.sysarc.2017.11.001.
[23] T. Youssef, A. Elsayed, and O. Mohammed, “Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure,” Energies, vol. 9, no. 3, p. 150, Mar. 2016, doi: 10.3390/en9030150.
[24] H. Yuefeng, “Study on Data Transmission of DCPS Publish-Subscribe Model,” in 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC), Xi’an: IEEE, May 2018, pp. 1–2172. doi: 10.1109/IMCEC.2018.8469351.
[25] B. Li, Y. Wang, J. Li, and S. Cao, “A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid,” Energies, vol. 11, no. 8, p. 1993, Aug. 2018, doi: 10.3390/en11081993.
[26] H. Pérez and J. J. Gutiérrez, “Modeling the QoS parameters of DDS for event-driven real-time applications,” J. Syst. Softw., vol. 104, pp. 126–140, Jun. 2015, doi: 10.1016/j.jss.2015.03.008.
[27] J. Rodríguez-Molina, S. Bilbao, B. Martínez, M. Frasheri, and B. Cürüklü, “An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles,” Sensors, vol. 17, no. 8, p. 1802, Aug. 2017, doi: 10.3390/s17081802.
[28] M. Takrouni, A. Hasnaoui, I. Mejri, and S. Hasnaoui, “A New Methodology for Implementing the Data Distribution Service on Top of Gigabit Ethernet for Automotive Applications,” J. Circuits Syst. Comput., vol. 29, no. 13, p. 2050210, Oct. 2020, doi: 10.1142/S0218126620502102.
[29] B. AL-Madani, S. M. Elkhider, and S. El-Ferik, “DDS-Based Containment Control of Multiple UAV Systems,” Appl. Sci., vol. 10, no. 13, p. 4572, Jul. 2020, doi: 10.3390/app10134572.
[30] T. Wu et al., “Oops! It’s Too Late. Your Autonomous Driving System Needs a Faster Middleware,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 7301–7308, Oct. 2021, doi: 10.1109/LRA.2021.3097439.
[31] T. R. Sheltami, A. A. Al-Roubaiey, and A. S. H. Mahmoud, “A survey on developing publish/subscribe middleware over wireless sensor/actuator networks,” Wirel. Netw., vol. 22, no. 6, pp. 2049–2070, Aug. 2016, doi: 10.1007/s11276-015-1075-0.
[32] CORBA, “CORBA History,” CORBA. Accessed: Jan. 16, 2024. [Online]. Available: https://www.corba.org/history_of_corba.htm
[33] Oracle, “The JavaTM Tutorials. Trail:RMI,” Oracle JavaTM Documentation. Accessed: Jan. 16, 2024. [Online]. Available: https://docs.oracle.com/javase/tutorial/rmi/
[34] IBM, “Remote Procedure Call,” IBM Documentation. Accessed: May 01, 2024. [Online]. Available: https://www.ibm.com/docs/en/aix/7.3?topic=concepts-remote-procedure-call
[35] T. Guesmi, R. Rekik, S. Hasnaoui, and Rezig, “Design and Performance of DDS-based Middleware for RealTime Control Systems,” Int. J. Comput. Sci. Netw. Secur., vol. 7, no. 12, Dec. 2007, [Online]. Available: https://community.rti.com/content/paper/design-and-performance-dds-based-middleware-real-time-control-systems
[36] Open Robotics, “ROS 2 Documentation.” [Online]. Available: https://docs.ros.org/en/jazzy/#
[37] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of ROS2,” in Proceedings of the 13th International Conference on Embedded Software, Pittsburgh Pennsylvania: ACM, Oct. 2016, pp. 1–10. doi: 10.1145/2968478.2968502.
[38] S. Saxena, H. E. Z. Farag, and N. El-Taweel, “A distributed communication framework for smart Grid control applications based on data distribution service,” Electr. Power Syst. Res., vol. 201, p. 107547, Dec. 2021, doi: 10.1016/j.epsr.2021.107547.
[39] A. Alaerjan, D.-K. Kim, H. Ming, and H. Kim, “Configurable DDS as Uniform Middleware for Data Communication in Smart Grids,” Energies, vol. 13, no. 7, p. 1839, Apr. 2020, doi: 10.3390/en13071839.
[40] Cloudflare, “What is HTTP,” Cloudflare. Accessed: May 01, 2024. [Online]. Available: https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
[41] OPC, “Unified Architecture,” OPC Foundation. Accessed: May 01, 2024. [Online]. Available: https://opcfoundation.org/about/opc-technologies/opc-ua/
[42] B. Almadani and S. M. Mostafa, “IIoT Based Multimodal Communication Model for Agriculture and Agro-Industries,” IEEE Access, vol. 9, pp. 10070–10088, 2021, doi: 10.1109/ACCESS.2021.3050391.
[43] S. Saxena, N. A. El-Taweel, H. E. Farag, and L. St. Hilaire, “Design and Field Implementation of a Multi-Agent System for Voltage Regulation Using Smart Inverters and Data Distribution Service (DDS),” in 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON: IEEE, Oct. 2018, pp. 1–6. doi: 10.1109/EPEC.2018.8598367.
[44] J. J. M. Martin-Carrascosa, J. M. L. Vega, J. P. Molina, J. J. R. Muñoz, and J. M. L. Soler, “NAPA: An algorithm to auto-tune unicast reliable communications over DDS,” Jul. 04, 2014.
[45] B. Almadani, M. N. Bajwa, S.-H. Yang, and A.-W. A. Saif, “Performance Evaluation of DDS-Based Middleware over Wireless Channel for Reconfigurable Manufacturing Systems,” Int. J. Distrib. Sens. Netw., vol. 11, no. 7, p. 863123, Jul. 2015, doi: 10.1155/2015/863123.
[46] Y. Fu, L. Hao, and D. Guo, “Application Research of Distributed Simulation System Based on Data Distribution,” in 2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Xi’an, China: IEEE, Nov. 2019, pp. 268–273. doi:10.1109/ICUSAI47366.2019.9124816.
[47] L. L. Lourenco, G. Oliveira, P. D. Mea Plentz, and J. Roning, “Achieving reliable communication between Kafka and ROS through bridge codes,” in 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia: IEEE, Dec. 2021, pp. 324–329. doi:10.1109/ICAR53236.2021.9659422.
[48] J. M. Cruz, A. Romero-Garcés, J. P. B. Rubio, R. M. Robles, and A. B. Rubio, “A DDS-based middleware for quality-of-service and high-performance networked robotics: A DDS-BASED MIDDLEWARE FOR QOS AND HIGH-PERFORMANCE NETWORKED ROBOTICS,” Concurr. Comput. Pract. Exp., vol. 24, no. 16, pp. 1940–1952, Nov. 2012, doi: 10.1002/cpe.2816.
[49] I. Calvo, F. Pérez, I. Etxeberria-Agiriano, and O. G. De Albéniz, “Designing High Performance Factory Automation Applications on Top of DDS,” Int. J. Adv. Robot. Syst., vol. 10, no. 4, p. 205, Apr. 2013, doi: 10.5772/56341.
[50] Z. Kang, R. Canady, A. Dubey, A. Gokhale, S. Shekhar, and M. Sedlacek, “A Study of Publish/Subscribe Middleware Under Different IoT Traffic Conditions,” in Proceedings of the International Workshop on Middleware and Applications for the Internet of Things, Delft Netherlands: ACM, Dec. 2020, pp. 7–12. doi: 10.1145/3429881.3430109.
[51] B. AL-Madani and H. Ali, “Data Distribution Service (DDS) based implementation of Smart grid devices using ANSI C12.19 standard,” Procedia Comput. Sci., vol. 110, pp. 394–401, 2017, doi: 10.1016/j.procs.2017.06.082.
[52] T. Agarwal, P. Niknejad, M. R. Barzegaran, and L. Vanfretti, “Multi-Level Time-Sensitive Networking (TSN) Using the Data Distribution Services (DDS) for Synchronized Three-Phase Measurement Data Transfer,” IEEE Access, vol. 7, pp. 131407–131417, 2019, doi: 10.1109/ACCESS.2019.2939497.
[53] J. F. Ingles-Romero, A. Romero-Garces, C. Vicente-Chicote, and J. Martinez, “A Model-Driven Approach to Enable Adaptive QoS in DDS-Based Middleware,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 1, no. 3, pp. 176–187, Jun. 2017, doi: 10.1109/TETCI.2017.2669187.
[54] RTI, “RTI Tools System Designer,” RTI. Accessed: May 01, 2024. [Online]. Available: https://www.rti.com/products/tools/system-designer
[55] Y. Liu, Y. Guan, X. Li, R. Wang, and J. Zhang, “Formal Analysis and Verification of DDS in ROS2,” in 2018 16th ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), Beijing, China: IEEE, Oct. 2018, pp. 1–5. doi: 10.1109/MEMCOD.2018.8556970.
[56] A. Jalil, J. Kobayashi, and T. Saitoh, “Optimization Algorithm for Balancing QoS Configuration in Aggregated Robot Processing Architecture,” presented at The 2023 International Conference on Artificial Life and Robotics (ICAROB2023), Oita, Japan, 9-12 February. Accessed: Nov. 16, 2023. [Online]. Available: https://alife-robotics.co.jp/members2023/icarob/data/html/data/GS/GS4/GS4-4.pdf
[57] Z. Kang, K. An, A. Gokhale, and P. Pazandak, “Evaluating Performance of OMG DDS in Kubernetes Container Deployment,” presented at the Middleware, Dec. 2020. [Online]. Available: https://www.dre.vanderbilt.edu/~gokhale/WWW/papers/Middleware2020.pdf
[58] K. An, T. Kuroda, A. Gokhale, S. Tambe, and A. Sorbini, “Model-driven generative framework for automated OMG DDS performance testing in the cloud,” ACM SIGPLAN Not., vol. 49, no. 3, pp. 179–182, Mar. 2014, doi: 10.1145/2637365.2517216.
[59] G. Zhang, Y. Wang, J. Ren, W. Liu, and K. Gao, “Distributed Simulation System Based on Data Distribution Service Standard,” in 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin City, China: IEEE, Jun. 2021, pp. 440–445. doi: 10.1109/IWCMC51323.2021.9498625.
[60] Thales, “About Thales.” Accessed: May 01, 2024. [Online]. Available: https://www.thalesgroup.com/en/global/group
[61] S. Sudhakaran, V. Mageshkumar, A. Baxi, and D. Cavalcanti, “Enabling QoS for Collaborative Robotics Applications with Wireless TSN,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada: IEEE, Jun. 2021, pp. 1–6. doi:10.1109/ICCWorkshops50388.2021.9473897.
[62] T. Kronauer, J. Pohlmann, M. Matthe, T. Smejkal, and G. Fettweis, “Latency Analysis of ROS2 Multi-Node Systems,” in 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany: IEEE, Sep. 2021, pp. 1–7. doi:10.1109/MFI52462.2021.9591166.
[63] G. Yoon, S. Lee, and H. Choi, “QoS Optimizer,” in 2016 International Conference on Platform Technology and Service (PlatCon), Jeju: IEEE, Feb. 2016, pp. 1–5. doi: 10.1109/PlatCon.2016.7456819.
[64] S. C. Lin, “QoS Configuration Validation and System Emulation for IoT Systems based on Data Distribution Service Protocol,” National Central University, Taiwan.
[65] IBM, “ONC RPC Concepts.” Accessed: Jun. 12, 2024. [Online]. Available: https://www.ibm.com/docs/en/cics-ts/6.x?topic=rpc-onc-concepts
[66] IBM, “What’s New in CICS TS 6.2?” Accessed: Jun. 14, 2024. [Online]. Available: https://www.ibm.com/docs/en/cics-ts/6.x?topic=whats-new-in-cics-ts-62
[67] IBM, “IBM MQ,” IBM. Accessed: May 01, 2024. [Online]. Available: https://www.ibm.com/products/mq
[68] RabbitMQ, “RabbitMQ: One Broker to Queue Them All,” RabbitMQ. Accessed: May 01, 2024. [Online]. Available: https://www.rabbitmq.com/
[69] Apache, “Apache ActiveMQ: Flexible & Powerful Open Source Multi-Protocol Messaging,” Apache ActiveMQ. Accessed: May 01, 2024. [Online]. Available: https://activemq.apache.org/
[70] Kafka, “Kafka: Introduction,” Kafka. Accessed: May 01, 2024. [Online]. Available: https://kafka.apache.org/intro
[71] Redis, “Redis Pub/Sub,” Redis. Accessed: May 01, 2024. [Online]. Available: https://redis.io/docs/latest/develop/interact/pubsub/
[72] MQTT, “MQTT: The Standard for IoT Messaging,” MQTT. Accessed: May 01, 2024. [Online]. Available: https://mqtt.org/
[73] G. Pardo-Castellote, “OMG data distribution service: architectural overview,” in IEEE Military Communications Conference, 2003. MILCOM 2003., Boston, MA, USA: IEEE, 2003, pp. 242–247. doi: 10.1109/MILCOM.2003.1290110.
[74] K. Karenos, M. Kim, H. Lei, H. Yang, and F. Ye, “Providing Quality of Service in Wide-Area Publish/Subscribe Systems,” in Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware, 2009, pp. 1–2.
[75] J. Hoffert and D. C. Schmidt, “Maintaining QoS for publish/subscribe middleware in dynamic environments,” in Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, Nashville Tennessee: ACM, Jul. 2009, pp. 1–2. doi: 10.1145/1619258.1619295.
[76] A. Alaerjan, “Formalizing the Semantics of DDS QoS Policies for Improved Communications in Distributed Smart Grid Applications,” Electronics, vol. 12, no. 10, p. 2246, May 2023, doi: 10.3390/electronics12102246.
[77] Y. Fu, L. Hao, and D. Guo, “Application Research of Distributed Simulation System Based on Data Distribution,” in 2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Xi’an, China: IEEE, Nov. 2019, pp. 268–273. doi: 10.1109/ICUSAI47366.2019.9124816.
[78] T. Kronauer, J. Pohlmann, M. Matthe, T. Smejkal, and G. Fettweis, “Latency Analysis of ROS2 Multi-Node Systems,” in 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany: IEEE, Sep. 2021, pp. 1–7. doi: 10.1109/MFI52462.2021.9591166.
[79] H. Pérez and J. J. Gutiérrez, “Modeling the QoS parameters of DDS for event-driven real-time applications,” J. Syst. Softw., vol. 104, pp. 126–140, Jun. 2015, doi: 10.1016/j.jss.2015.03.008.
[80] A. Alaerjan, D.-K. Kim, H. Ming, and H. Kim, “Configurable DDS as Uniform Middleware for Data Communication in Smart Grids,” Energies, vol. 13, no. 7, p. 1839, Apr. 2020, doi: 10.3390/en13071839.
[81] R. S. Auliya, R.-K. Sheu, D. Liang, and W.-J. Wang, “IIoT Testbed: A DDS-Based Emulation Tool for Industrial IoT Applications,” in 2018 International Conference on System Science and Engineering (ICSSE), New Taipei: IEEE, Jun. 2018, pp. 1–4. doi: 10.1109/ICSSE.2018.8520091.
[82] “What is YAML?,” RedHat. Accessed: Jan. 16, 2024. [Online]. Available: https://www.redhat.com/en/topics/automation/what-is-yaml
[83]JSON, “Introducing JSON,” JSON. Accessed: Jan. 16, 2024. [Online]. Available: https://www.json.org/json-en.html
[84] NCU Software Research Center, “IIoT Testbed.” Accessed: May 01, 2024. [Online]. Available: https://github.com/Ncu-software-research-center/IIOT-testbed/tree/master
[85] R. S. Auliya, C.-C. Chen, P.-R. Lin, D. Liang, and W.-J. Wang, “Optimization of message delivery reliability and throughput in a DDS-based system with per-publisher sending rate adjustment,” Telecommun. Syst., vol. 84, no. 2, pp. 235–250, Oct. 2023, doi: 10.1007/s11235-023-01045-x. |