博碩士論文 106621008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.236.253.192
姓名 羅翊銓(Yi-Chuan Lo)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 IBM_VDRAS系統功能的擴充與個案模擬- 以2017年7月7日午後對流為例
(The extension of IBM_VDRAS system and its case study-07/07/2017 afternoon thunderstorm case.)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用IBM_VDRAS (Variational Doppler Radar Analysis System based on immersed boundary method)分析2017年7月7日的午後對流個案。分析之前我們新增了以下幾個功能,分別是科氏力、雷達波束遮擋和晴空回波同化以及新的極小化方法L-BFGS-B(Limited-memory BFGS for bound-constrained)。此外,為解決IBM_VDRAS低層風場高估的問題,在本研究中將地形下邊界條件從滑動邊界改為非滑動邊界,並和觀測比較孰優劣。個案分析會比較移動午後對流和一般午後對流的結構差別,並推測造成此差別的原因。
研究結果顯示,非滑動邊界能有效降低低層風速高估的問題,且風向的表現亦比較好。從IBM_VDRAS分析結果能看到,移動午後對流結構不對稱,類似中尺度颮線且對流後方存在強風區,冷池移速和強風區大小相當,因此對流移動應是由對流後方強風區平流所導致,而對流通過測站會有風速劇增的現象則是因為強風下沉至地表所導致;一般午後對流則是偏向垂直發展且沒有這個強風區,對流近似滯留。造成兩者的差異推測是環境風切的不同所導致,從ERA5再分析資料顯示,平原風場在有2-3公里有極值,0-3公里風切約8ms^(-1),山區風速則偏弱,0-3公里風切只有3.5ms^(-1),平原低層風切確實較大。
摘要(英) This study utilized IBM_VDRAS (Immersed Boundary Method_Variational Doppler Radar Analysis System) to analyze the afternoon thunderstorm on 7 July 2017. Before we analyzed this case, a few new features were implemented to IBM_VDRAS. They included Coriolis force, radar beam blockage, assimilation of clear air echo, and a new minimizer called LBFGS-B (Limited-memory BFGS for bound-constrained). Furthermore, in order to resolve the problems associated with the overestimation of wind speed at the lowest level of IBM_VDRAS, we changed the lower boundary condition from free-slip to no-slip type, and compared the results against the observations. The results showed that no-slip type boundary condition is able to reduce the problem of wind speed overestimation, and generate more accurate wind directions than those from the free-slip type boundary. In the case study of this research we compared the differences between a fast moving convection over the plain and an ordinary convection developed in the mountainous area, and attempted to find out the reason causing such differences.
From the analyses of IBM_VDRAS, it can be seen that the structure of the moving convection was asymmetric, and was more like a squall line, with strong wind descending behind the convection to the ground. This is also confirmed by the surface station observations as the wind speed increased when the convection passed the station. In addition, the cold pool’s moving speed was approximately equal to the strong wind. Therefore, it is speculated that the movement of this moving convective system was driven by the advection of the strong wind. On the other hand, the ordinary convection developed vertically in the mountainous area without strong wind field, and was almost stationary. The difference might be attributed to the strength of the environmental wind shear. From the ERA5 reanalysis data, it was shown that the maximum wind speed in the plain area occurred at 2.0 ~ 3.0 km, and the low level wind shear below 3.0 km was about 8ms^(-1). By contrast, the wind speed above mountain was weaker, with a low level wind shear below 3.0 km of only 3.5ms^(-1).
關鍵字(中) ★ IBM_VDRAS
★ 午後對流
關鍵字(英) ★ IBM_VDRAS
★ Afternoon convection
論文目次 摘要 I
Abstract II
目錄 IV
表目錄 VI
圖目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究動機與目的 2
第二章 研究方法 4
2-1. IBM_VDRAS介紹 4
2-1-1. VDRAS 4
2-1-2. GCIBM 7
2-2. 新增功能 8
2-2-1. 科氏力 8
2-2-2. 雷達波束遮擋與晴空回波同化 9
2-2-3. L-BFGS-B下降法 10
2-3. 雷達資料處理 11
2-3-1. NCU 12
2-3-2. RCWF 12
2-3-3. RCMK 13
2-3-4. RCCG 13
第三章 非滑動邊界 14
3-1. Ghost cell更新方式 14
3-2. 與滑動邊界的差異 15
第四章 實際個案介紹與模擬 16
4-1. 天氣概況 16
4-2. 模式設定 17
4-2-1. WRF 17
4-2-2. VDRAS 18
4-3. 地面測站檢驗 18
4-4. 系統結構分析 20
4-4-1. 移動對流 20
4-4-2. 一般對流 21
4-4-3. 綜合分析 22
4-5. 科氏力的影響 24
第五章 總結 26
5-1. 結論 26
5-2. 未來展望 26
參考文獻 28
附表 33
附圖 36
附錄 92
Appendix A -- PhiDP去折疊 92
Appendix B -- 地面溫度、濕度客觀分析 94
參考文獻 陳依涵,2016:發展地面資料同化方法以改善都卜勒雷達變分分析系統之分析與預報能力。國立中央大學大氣物理所碩士論文,1–95。

黃熠程,2017: 四維變分資料同化系統與衛星資料整合以重建台灣與周圍地區的高解析度氣象場。國立中央大學大氣物理所碩士論文,1-91。

吳英璋,2019:對IBM_VDRAS四維變分資料同化系統的改進以及在探討複雜地形上劇烈降雨過程的應用:北台灣午後對流個案分析。

Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 1805–1824.

Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829–840.

Byrd, R. H., P. Lu and J. Nocedal., 1995: A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing, 16, 1190–1208.

Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The implementation of the ice-phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015–1038.

Chen, X. C., K. Zhao, J. Z. Sun, B. W. Zhou, and W. C. Lee, 2016: Assimilating surface observations in a four-dimensional Variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33(10), 1106–1119.


Crook, N. A., and J. Sun, 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol., 19, 888–898.

Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294

Fujita, T. T., 1978: Manual of downburst identification for project Nimrod. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp. [NTIS PB-286048.]

Ge, G., J. Gao , and M. Xue, 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 1075–1092.

Heistermann, M., Jacobi, S., and Pfaff, T.: Technical Note: An open source library for processing weather radar data (wradlib), Hydrol. Earth Syst. Sci., 17, 863-871.

Helmus, J.J. and Collis, S.M., 2016. The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 4(1), p.e25.

Hu, M., and M. Xue, 2007a: Analysis and prediction of 8 May 2003 Oklahoma City tornadic thunderstorm and embedded tornado using ARPS with assimilation of WSR-88D radar data. Preprints, 22nd Conf. on Weather Analysis and Forecasting/ 18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 1B.4. [Available online at http:// ams.confex.com/ams/pdfpapers/123683.pdf.]

——, ——, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.

——, ——, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721.

Kawabata J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Wakazuki,2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data assimilation system, J. Meteor. Soc. Japan,85, 255-276.

——, T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 1911–1931.

Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Math. Programming, 45, 503–528.

Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather Research and Forecasting model. Mon. Wea. Rev., 138, 796–817.

——, ——, and ——, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF Model. Mon. Wea. Rev., 140, 3936–3955.

Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatidudes. John Wiley & Sons, 407 pp.

Marshall, J. S.; Palmer, W. M. 1948: The distribution of raindrops with size. Journal of Meteorology, 5 (4), 165–166.

Mohd-Yusof, J., 1997: Combined immersed boundary/b-spline methods for simulations of flow in complex geometry. Center for Turbulence Research, Annual Research Briefs, NASA Ames/Stanford University, 317–327.

Morales, J.L. and J. Nocedal., 2011: L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software (TOMS), 38, 1-4.

Panofsky, H. A., J. A. Dutton, 1984: Atmospheric turbulence: Models and methods for engineering applications. Wiley. 397 p.

Rotunno, R., and J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, longlived squall lines. J. Atmos. Sci., 45, 463–485.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duha, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 11 pp.

Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Weat. Rev., 139, 3446–3468.

Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.

——, and ——, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.

——, and ——, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.

——, M. Chen, and Y. Wang, 2010: A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715–1735.

——, and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245–2264.

Tai, S.-L., Y.-C. Liou, J. Sun, and S.-F. Chang, 2017: The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Wea. Rev., 145, 289–306.

Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Twodimensional convection in non-constant shear: A model for mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739–762.

Tong, M. and Xue, M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev.133, 1789-1807.

Tripoli, G. J., and W. R. Cotton, 1981: The use of ice–liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102.

Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quanti-tative precipitation nowcasting with a local ensemble trans-form Kalman filter radar data assimilation system: Observingsystem simulation experiments. Tellus, 66A, 21 804.

Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593–623.

Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble trans-
form Kalman filter radar data assimilation system: Observing
system simulation experiments. Tellus,66A, 21 804
Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 2224–2244.

Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 2565–2578.

Weisman, M. L., 1992: The role of convectively generated rearinflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847.

——, 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670.

Zhu, C., R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 550–560.

Zou, X., 1995: Tangent linear and adjoint of ‘‘on–off’’ processes and their feasibility for use in four-dimensional variational data assimilation. Tellus, 49A, (1), 3–31.
指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2019-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明