博碩士論文 106621015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.233.239.102
姓名 楊淳安(Chun-An Yang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化
(Changes of Tropical Precipitation and Convection under Global Warming Projected from HiRAM Simulations)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-31以後開放)
摘要(中) 在過去研究中,對於全球暖化下熱帶降水之變化及物理機制的探討有幾種不同的理論,其中最廣為人知的理論有Chou and Neelin (2004)和Held and Soden (2006) 所提出之 “wet-get-wetter” 及 Xie et al. (2010) 所提出之 “warmer-get-wetter” 理論。本篇研究使用高解析度大氣模式High Resolution Atmospheric Model (HiRAM)探討在RCP8.5暖化情境下,熱帶區域降水之變化,並進一步去了解影響降水變化之物理機制。
研究結果顯示,在全球暖化下,赤道東太平洋地區為最敏感區域,降水增加最為顯著,而降水減少則圍繞上述區域呈現弓狀的分布。整個熱帶海洋上,只有略微超過1/2的面積符合 “wet-get-wetter” 理論。利用水氣收支分析,我們得到熱帶降水變化主要與對流增強與減弱之動力效應項-⟨ω^′ ∂_p q ̅ ⟩有關,而熱力效應項-⟨ω ̅∂_p q^′ ⟩則扮演加強或抵消降水增加的作用。在符合 “wet-get-wetter” 理論的WW (wet-get-wetter)及DD (dry-get-drier)區域,其降水變化為熱力作用與動力效應合作所致;而在違背 “wet-get-wetter” 理論的WD (wet-get-drier)及DW (dry-get-wetter)區域,其降水變化主要為動力效應所主導,熱力效應則抵銷一部分動力效應。
另外,比較赤道東太平洋氣候敏感區域之降水變化機制差異,使用濕穩定度指標Normalized Gross Moist Stability (NGMS)及對流垂直變化情形作分析,結果顯示:在氣候上升運動區有深對流加深的情形(more top-heavy convection),並伴隨著濕穩定度指標上升之現象(NGMS變化為正值);而在氣候下沉運動區有淺對流增強的趨勢(more bottom-heavy convection),並伴隨濕穩定度指標降低之現象(NGMS變化為負值)。濕穩定度指標變化之差異可解釋為什麼在全球暖化下,氣候上較為穩定的赤道東太平洋對流下沉區降水變化為何能與氣候上較為不穩定的對流上升區有相當幅度降水變化的原因。
最後,熱帶降水變化的分布與海表面溫度(SST)變化及雲輻射效應(CRE)變化相似,因此我們嘗試利用Temperature-Cloud-Radiation正回饋機制去解釋赤道東太平洋地區之強降水變化:當SST增暖幅度最大區域,空氣中水汽含量增加也最多;空氣中水氣含量增加最多區域,成雲效率也最高;成雲效率最高區域,CRE作用也最為顯著;CRE作用最顯著區域造成向下長波輻射加熱(溫室效應),可進一步維持暖化後的海溫和氣溫型態,形成正回饋作用。
摘要(英) In previous studies, there are various theories about tropical precipitation changes and mechanisms under global warming. The most well-known hypotheses are the “wet-get-wetter” theory from Chou and Neelin (2004) and Held and Soden (2006), and the “warmer-get-wetter” theory from Xie et al. (2010). In this study, the High Resolution Atmospheric Model (HiRAM) is used to investigate the changes of precipitation in the tropical region under the RCP8.5 warming scenario, and to further understand the physical mechanism affecting the precipitation changes.
The results show that the equatorial eastern Pacific is the most sensitive region in precipitation increase under the influence of global warming, while the precipitation reduction exhibits a hook-like distribution surrounding the above region. For the tropical atmosphere above oceans, slightly over 1/2 of the area follows the “wet-get-wetter” theory. From the moisture budget, we find that in WW and DD regions where follows the “wet-get-wetter” or “dry-get-drier” hypothesis generally holds, the precipitation change is caused by the cooperation of thermodynamic effect, (-⟨〖ω ̅∂〗_p q^′ ⟩), and the dynamic effect, (-⟨ω^′ ∂_p q ̅ ⟩). In regions of DW and WD disobeying the “wet-get-wetter” hypothesis, the dynamic effect dominates the moisture budget and shows opposite signs to the thermodynamic effect.
Besides, the difference in precipitation change mechanism in the target domain is compared, and changes in the Normalized Gross Moist Stability (NGMS) index and convective vertical structure are analyzed. The results show that there is an enhanced top-heavy structure of convection with positive NGMS change in the mean ascending region and an enhanced bottom-heavy structure of convection with negative NGMS change in the mean descending region. The differences in NGMS over the equatorial eastern Pacific may explain why the more stable mean descending region can have a similar size of precipitation changes as the more unstable mean ascending region under global warming.
Besides, the distribution of tropical precipitation changes is similar to the change of sea surface temperature (SST) and the cloud radiation effect (CRE). Accordingly, we try to use a positive Temperature-Cloud-Radiation feedback mechanism to explain the large positive precipitation changes over the equatorial Pacific under global warming. The results show that as the SST warms, more water vapor may exist in the atmosphere; as more water vapor exists in the atmosphere, more clouds may generate; as more clouds generate, the CRE effect may increase. The most significant region of the CRE effect causes the downward longwave radiation heating (greenhouse effect), which can further maintain the sea surface temperature and temperature patterns under warming and form a positive feedback loop.
關鍵字(中) ★ 全球暖化
★ 濕穩定度指標
★ 雲輻射效應
★ 溫度-雲-輻射回饋
關鍵字(英) ★ Global Warming
★ Normalized Gross Moist Stability (NGMS)
★ Cloud Radiation Effect (CRE)
★ Temperature-Cloud-Radiation feedback
論文目次 摘要 i
Abstract iii
Acknowledges v
Contents vi
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 4
2.1 Data Sources 4
2.2 Moisture Budget 4
2.3 Normalized Gross Moist Stability (NGMS) 6
2.4 Cloud Radiation Effect (CRE) 8
Chapter 3 Evaluations of Model Climatology 10
3.1 Precipitation 10
3.2 Cloud Radiation Effect 11
3.3 Liquid/Ice Water Path 11
3.4 Stream Function and Velocity Potential 12
Chapter 4 Changes of Precipitation 16
4.1 Tropical Distribution 16
4.2 Moisture Budget Analysis 17
4.3 Changes over the Equatorial Pacific Domain 19
Chapter 5 Temperature-Cloud-Radiation feedback 27
5.1 Implication for CRE 27
5.2 Temperature-Cloud-Radiation feedback 28
Chapter 6 Conclusion and Discussion 36
Appendix 40
References 44
參考文獻 Allen, M. R., and W. J. Ingram, 2002: Constraints on
future changes in climate and the hydrologic cycle.
Nature, 419, 224−232.
Andrews, D. G., 2000: An Introduction to Atmospheric
Physics. Cambridge University Press, 44 pp.
Back, L. E., and C. S. Bretherton 2009a: On the
relationship between SST gradients, boundary layer
winds and convergence over tropical oceans, J.
Climate, 22, 4182–4196.
Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W.
Frierson, 2014: Gross moist stability and MJO
simulation skill in three full-physics GCMs. J. Atmos.
Sci., 71, 3327–3349.
Bui, H. X., J.-Y. Yu, and C. Chou, 2016: Impacts of
vertical structure of large-scale vertical motion in
tropical climate: Moist static energy framework. J.
Atmos. Sci., 73(11), 4427–4437.
Bui, H. X., J.-Y. Yu, and C. Chou, 2019: Impacts of model
spatial resolution on the vertical structure of
convection in the Tropics. Climate Dyn., 52, 15-27.
Bui, H. X., J.-Y. Yu, H.-W. Liu, C.-Y. Tu, P.-G. Chiu and
H.-H. Hsu, 2019: Convective Structure Changes over the
Equatorial Pacific with Highly Increased Precipitation
under Global Warming Simulated in the HiRAM. SOLA, 15,
119–124.
Chen, C.-A., J.-Y. Yu, and C. Chou, 2016: Impacts of
vertical structure of convection in global warming:
The role of shallow convection. J. Climate, 29,
4665−4684.
Chou, C., and J. D. Neelin, 2004: Mechanisms of global
warming impacts on regional tropical precipitation.
J.Climate, 17(13), 2688–2701.
Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009:
Evaluating the rich-get-richer mechanism in tropical
precipitation change under global warming. J. Climate,
22(8), 1982–2005.
Fisher, L. R., R. A. Gamble, and J. Middlehurst, 1981: The
Kelvin equation and the capillary condensation of
water. Nature, 290, 575-576.
Graham N, Barnett TP. 1987: Observations of sea surface
temperature and convection over tropical oceans.
Science, 238, 657–659.
Hall, A., and S. Manabe, 1999: The role of water vapor
feedback in unperturbed climate variability and global
warming. J. Climate, 12, 2327–2346.
Held, I. M., and B. J. Soden, 2006: Robust responses of
the hydrological cycle to global warming. J. Climate,
19(21), 5686–5699.
Heng, Z., Y. Fu, G. Liu, R. Zhou, Y. Wang, R. Yuan, J.
Guo, and X. Dong, 2014: A study of the distribution of
variability of cloud water using ISCCP, SSM/I cloud
product, and reanalysis datasets. J. Climate, 27, 3114
–3128.
Huang, P., 2014: Regional response of annual-mean tropical
rainfall to global warming. Atmos. Sci. Lett., 15,
103−109.
Inoue, K., and L. E. Back 2015: Gross moist stability
assessment during TOGA COARE: Various interpretations
of gross moist stability. J. Atmos. Sci., 72, 4148–
4166.
Johnson NC, Xie S‐P. 2010: Changes in the sea surface
temperature threshold for tropical convection. Nature
L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train, Phys.Today, 63, 36–41.
Lindzen, R. S., and S. Nigam, 1987: On the role of sea
surface temperature gradients in forcing low-level
winds and convergence in the tropics. J. Atmos. Sci.,
44, 2418–2436.
Liu, H.-W., J.-Y. Yu, and C.-A. Chen, 2018: Changes of
tropical precipitation and convective structure under
global warming projected by CMIP5 model simulations.
Terr. Atmos. Ocean. Sci., 29, 429−440.
Ma, J. & Xie, S.-P., 2013: Regional patterns of sea
surface temperature change: a source of uncertainty in
future projections of precipitation and atmospheric
circulation. J. Climate., 26, 2482–2501.
Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J.
Stouffer, M. Latif, B. McAvaney, and J. F. B.
Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A
new era in climate change research. Bull. Amer.
Meteor. Soc., 88, 1383-1394.
Mitchell, J., C. Wilson, and W. Cunnington, 1987: On CO2
climate sensitivity and model dependence of results.
Quart. J. Roy. Meteor. Soc., 113, 293–322.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical
convergence based on the moist static energy budget.
Mon. Wea. Rev., 115, 3–12.
Pyrina, M., N. Natzianastassiou, C. Matsoukas, A. Fotiadi, C.D. Papadimas, K.G. Pavlakis, I.Vardavas, 2015: Cloud effects on the solar and thermal radiation budgets of the Mediterranean basin. Atmos. Res., 152, 14–28.
Raymond, D. J., S. Sessions, A. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Sys., 1, 9, doi:10.3894/JAMES.2009.1.9.
Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 4378–4392.
Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.
Stephens, G. L. and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 6141-6155.
Su, H. and J. D. Neelin, 2003: The scatter in tropical average precipitation anomalies. J. Climate, 16 (23), 3966-3977.
Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57, 1888–1905.
Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: sea surface temperature and rainfall. J. Climate, 23, 966–986.
Ying, J., and P. Huang, 2016: Cloud–radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models. J. Climate, 29, 3867–3881.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明