博碩士論文 106621602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.14.253.221
姓名 陶氏蘭(Dao Thi Lan)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 MJO對南海颱風活動之影響
(Impacts of Madden Julian Oscillation on Tropical Cyclone Activity over the South China Sea)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?
★ Changes of the Hadley Cell During the Last Four Decades★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation
★ Changes of Tropical Tropopause in Response to Global Warming★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討
★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming
★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study
★ The role of shallow convection in tropical circulation: a simple analytic approach★ Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用觀測資料及高解析度大氣模式(High-Resolution Atmospheric Model, HiRAM) 的模擬結果,探究Madden-Julian oscillation (MJO)對西北太平洋颱風活動的影響,尤其聚焦於颱風季(六至九月)時之南海盆地。觀測分析顯示,MJO顯著地影響位於南海盆地生成的颱風,較多(少)的颱風會在MJO處於增強(抑制)對流相位時形成。此外MJO也在控制南海盆地上西行與東行颱風路徑方面扮演了重要角色。HiRAM的模擬顯示,當大氣具有較快傳播速度之MJO時,模式將能適當地重現南海盆地上,和MJO變異有關之颱風活動整體特徵變化(包含其生成與路徑)。
於RCP8.5暖化情境下,HiRAM推估在21世紀末(2075-2099),MJO八相異相位的颱風生成數量皆會顯著地下降。此外,若與模擬現今氣候狀態(1980-2004年)之模式結果相比,藉由比較增強對流相位和抑制對流相位之間的颱風日平均生成率,HiRAM還預測出MJO對南海盆地生成的颱風影響將會更大,對於颱風移動軌跡也有較強的調節作用。
摘要(英) This study investigated the impacts of Madden-Julian Oscillation (MJO) on tropical cyclone (TC) activity over the western North Pacific (WNP), with a focus on the South China Sea (SCS), based on results from observations and high-resolution atmospheric model (HiRAM) simulations. Observational analyses showed that MJO imposes marked impacts on TC genesis over the SCS, with more (less) TC formations during the enhanced (suppressed) convection phases of MJO. Besides, MJO also plays an important role in modulating the tracks of both westward-moving and eastward-moving TCs in the SCS. Results from HiRAM simulations demonstrated that, while the model generates an MJO of faster propagation, the general features of TC activity (including genesis and track) changes over the SCS associated with MJO variability have been properly produced by HiRAM.
During the late 21th century period (2075-2099), TC genesis numbers in eight different MJO phases are expected to decrease significantly as projected by HiRAM under the RCP 8.5 warming scenario. Furthermore, HiRAM also projects a greater impact of MJO on TC genesis over the SCS, with a larger contrast of averaged daily genesis rate (DGR) between enhanced and suppressed convection phases as well as a greater modulation of MJO on TC moving trajectories compared to those in present climate state simulations (1980-2004).
關鍵字(中) ★ 季內震盪
★ 颱風活動
關鍵字(英) ★ Madden Julian Oscillation
★ Tropical Cyclone Activity
論文目次 Table of Contents
摘要...................................i
Abstract...............................ii
Table of Contents......................iv
List of Tables.........................vi
List of Figures........................vii
Notation Illustration..................ix
Chapter 1 Introduction ................1
Chapter 2 Data, Model and Methods......5
2.1 Data Sources.......................5
2.2 Model Design.......................5
2.3 Algorithm for TC Detection.........6
2.4 Diagnostics of MJO Phases..........7
2.5 Daily Genesis Rate.................7
2.6 Genesis Potential Index............8
Chapter 3 Modulations of MJO on TC Activity in observations .......................................9
3.1 Circulation and Tropical Cyclogenesis .......................................9
3.2 Tropical Cyclone Tracks and Steering Flows .......................................10
Chapter 4 TC Activity in HiRAM simulations and projections .......................................12
4.1 TC Activity........................12
4.2 Mechanisms of future changes.......13
Chapter 5. Modulations of MJO on TC Activity in HiRAM simulations and projections............14
5.1 Circulation and Tropical Cyclogenesis...........................14
5.2 Tropical Cyclone Tracks and Steering Flows..................................17
Chapter 6 Conclusions..................19
References.............................21
Tables contained.......................29
Figures contained......................31
參考文獻 Arnold, N. P., Branson, M., Kuang, Z., Randall, D. A. and Tziperman, E. (2015) MJO intensification with warming in the super-parameterized CESM. Journal of Climate, 28, 2706–2724. https://doi.org/10.1175/JCLI-D-14-00494.1.
Barrett, B. S. and Leslie, L. M. (2009) Links between tropical cyclone activity and Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Monthly Weather Review, 137, 727–744. https://doi.org/10.1175/2008MWR2602.1.
Bell, G. D., Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J., Kousky, V. E., Tinker, R., Thiaw, W., Chelliah, M. and Artusa, A. (2000) Climate assessment for 1999. Bulletin of the American Meteorological Society, 81, 1328-1328. https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.
Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. A., Garner, S. T. and Held, I. M. (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454-458. https://doi.org/10.1126/science.1180568.
Bessafi, M. and Wheeler, M. C. (2006) Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Monthly Weather Review, 134, 638–656. https://doi.org/10.1175/MWR3087.1.
Bui, H. X., and E. D. Maloney, 2018: Changes in Madden–Julian oscillation precipitation and wind variance under global warming. Geophysical Research Letters, 45, 7148–7155. https://doi.org/10.1029/2018GL078504.
Bretherton, C. S., McCaa, J. R. and Grenier, H. (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Monthly Weather Review, 132, 864–882. https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.
Chan, J. C. L. (2000) Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. Journal of Climate, 13, 2960–2972. https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
Chen, J.-H. and Lin, S.-J. (2011) The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophysical Research Letters, 38, L11804. https://doi.org/10.1029/2011GL047629.
Cui, J. and Li, T. (2019) Changes of MJO propagation characteristics under global warming. Climate Dynamic, 53, 5311. https://doi.org/10.1007/s00382-019-04864-4.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., MongeSanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F. (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal Royal Meteorological Society, 137, 553-597. https://doi.org/10.1002/qj.828.
Emanuel, K. A. (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688. https://doi.org/10.1038/nature03906.
Emanuel, K. A. (2010) Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-1958. Journal of Advances in Modeling Earth Systems, 2. https://doi.org/10.3894/JAMES.2010.2.1.
Emanuel, K. A. and Nolan, D. S. (2004) Tropical cyclone activity and the global climate system. In the 26th Conference on Hurricanes and Tropical Meteorology. American Meteorological Society: Miami, FL.
Goh, A. Z. C. and Chan, J. C.-L. (2010) Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. International Journal of Climatology, 30 (6), 827–843. https://doi.org/10.1002/joc.1943
Gray, W. M. (1979) Hurricanes: Their formation, structure and likely role in the tropical circulation. In Meteorology over Tropical Oceans, Shaw, D. B. (ed.). Royal Meteorological Society: James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX; 155–218.
Hall, J. D., Matthews, A. J. and Karoly, D. J. (2001) The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Monthly Weather Review, 129, 2970–2982. https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.
Jiang, X., Zhao, M. and Waliser, D. E. (2012) Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. Journal of Climate, 25, 6524–6538. https://doi.org/10.1175/JCLI-D-11-00531.1.
Kim, D., Lee, M. I., Kim, H. M., Schubert, S. D. and Yoo, J. H. (2014) The modulation of tropical storm activity in the Western North Pacific by the Madden Julian Oscillation in GEOS-5 AGCM experiments. Atmospheric Science Letters, 15, 335-341. https://doi.org/10.1002/asl2.509.
Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I. S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M. I., Neale, R., Suarez, M., Thayer-Calder, K. and Zhang, G. (2009) Application of MJO simulation diagnostics to climate models. Journal of Climate, 22, 6413–6436. https://doi.org/10.1175/2009JCLI3063.1.
Kim, J.-H., Ho, C.-H., Kim, H.-S., Sui, C.-H. and Park, S. K. (2008) Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. Journal of Climate, 21, 1171–1191. https://doi.org/10.1175/2007JCLI1493.1.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Held, I. M. and Tuleya, R. E. (2007) Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-kmgrid regional model. Bulletin of American Meteorological Society, 88, 1549-1565. https://doi.org/10.1175/BAMS-88-10-1549.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A. and Held, I. M. (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geoscience, 1, 359-364. https://doi.org/10.1038/ngeo202.
Knutson, T. R., Sirutis, J. J., Vecchi, G. A., Garner, S., Zhao, M., Kim, H. S., Bender, M., Tuleya, R. E., Held, I. M. and Villarini, G. (2013) Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. Journal of Climate, 26, 6591-6617. https://doi.org/10.1175/JCLI-D-1200539.1.
Korty, R. L., Camargo, S. J. and Galewsky, J. (2012) Tropical cyclone genesis factors in simulations of the last glacial maximum. Journal of Climate, 25, 4348-4365. https://doi.org/10.1175/JCLI-D-11-00517.1.
Li, R. C. Y. and Zhou, W. (2013a) Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. Journal of Climate, 26, 2904-2918. https://doi.org/10.1175/JCLI-D-12-00210.1.
Lin, S.-J. (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Monthly Weather Review, 132, 2293−2307. https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.
Ling, Z., Wang, Y. and Wang, G. (2015) Impact of Intraseasonal Oscillations on the Activity of Tropical Cyclones in Summer over the South China Sea. Part I: Local Tropical Cyclones. Monthly Weather Review, 29, 855-868. https://doi.org/10.1175/JCLI-D-15-0617.1.
Madden, R. A. and Julian, P. R. (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28 (5), 702–708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.
Madden, R. A. and Julian, P. R. (1972) Description of global-scale circulation cells in the Tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29 (6), 1109–1123. https://doi.org/10.1175/1520-0469(1972)029<1109: DOGSCC>2.0.CO;2.
Maloney, E. D. and Hartmann, D. L (2000a) Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. Journal of Climate, 13, 1451–1460. https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.
Murakami, H. and Sugi, M. (2010) Effect of model resolution on tropical cyclone climate projections. The Scientific Online Letters on the Atmosphere, 6, 73-76, https://doi.org/10.2151/sola.2010-019.
Murakami, H. and Wang, B. (2010) Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. Journal of Climate, 23, 2699-2712. https://doi.org/10.1007/s00382-011-1223-x.
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., Adachi, Y., Yukimoto, S., Hosaka, M., Kusunoki, S., Ose, T. and Kitoh, A. (2012) Future changes in tropical cyclone activity projected by the new high resolution MRI-AGCM. Journal of Climate, 25, 3237-3260, https://doi.org/10.1175/JCLI-D-11-00415.1.
Murakami, H., Hsu, P. C., Arakawa, O. and Li, T. (2014) Influence of model biases on projected future changes in tropical cyclone frequency of occurrence. Journal of Climate, 27, 2159-2181, https://doi.org/10.1175/JCLI-D-13-00436.1.
Phan, V. T., Long, T. T., Hai, B. H. and Kieu, C. (2015) Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2. Climate Research, 62, 115-129. https://doi.org/10.3354/cr01267.
Rui, H. and Wang, B. (1990) Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. Journal of the Atmospheric Sciences, 47, 357–379. https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.
Satoh, M., Oouchi, K., Nasuno, T., Taniguchi, H., Yamada, Y., Tomita, H., Kodama, C., Kinter, J., Achuthavarier, D., Managanello, J., Cash, B., Jung, T., Palmer, T. and Wedi, N. (2012) The intra-seasonal oscillation and its control of tropical cyclones simulated by high resolution global atmospheric models. Climate Dynamics, 39, 2185–2206. https://doi.org/10.1007/s00382-011-1235-6.
Subramanian, A., Jochum, M., Miller, A. J., Neale, R., Seo, H., Waliser, D. and Murtugudde, R. (2014). The MJO and global warming: A study in CCSM4. Climate Dynamics, 42 (7-8), 2019–2031. https://doi.org/10.1007/s00382-013-1846-1.
Tsou, C.-H., Huang, P.-Y., Tu, C.-Y., Chen, C.-T., Tzeng, T.-P. and Cheng, C.-T. (2016) Present simulation and future Typhoon activity projection over western North Pacific and Taiwan/East Coast of China in 20-km HiRAM climate model. Terrestrial Atmospheric Oceanic Sciences, 27(5), 687-703. https://doi.org/10.3319/TAO.2016.06.13.04.
Vitart F. (2009) Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophysical Research Letters, 36, L15802. https://doi.org/10.1029/2009GL039089.
Wang, B. and Chan, J. C. L. (2002) How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15, 1643–1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wang, B. and Moon, J.-Y. (2017) Sub-seasonal prediction of extreme weather events. Bridging Science and Policy Implication for Managing Climate Extremes: Linking Science and Policy Implication, Chung, C.-S. and Wang, B., Eds., World Scientific, in press.
Wang, Z. and Fei, L. (1987) Manual for typhoon prediction. China Meteorology Press, Beijing, 260–287 (in Chinese).
Waple, A. M., Lawrimore, J. H., Halpert, M. S., Bell, G. D., Higgins, W., Lyon, B., Menne, M. J., Gleason, K. L., Schnell, R. C., Christy, J. R., Thiaw, W., Wright, W. J., Salinger, M. J., Alexander, L., Stone, R. S. and Camargo, S. J. (2002) Climate assessment for 2001. Bulletin of American Meteorological Society, 83, 938-938. https://doi.org/10.1175/1520-0477-83.6.S1.
Wheeler, M. C., and Hendon, H. H. (2004) An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917–1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.
Yang, L., Du, Y., Wang, D., Wang, C. and Wang, X. (2015) Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Climate Dynamic, 44, 1505–1519. https://doi.org/10.1007/s00382-014-2180-y.
Ying, M., Knutson, T. R., Kamahori, H. and Lee, T. C. (2012) Impacts of climate change on tropical cyclones in the Western North Pacific Basin. Part II: Late twenty-first century projections. Tropical Cyclone Research and Review, 1, 231-241. https://doi.org/10.6057/2012TCRR02.09.
Yu, J.-Y., Chou, C. and Chiu, P.-G. (2009) A revised accumulated cyclone energy index. Geophysical Research Letters, 36, L14710. https://doi.org/10.1029/2009GL039254.
Yu, J.-Y. and Chiu, P.-G. (2012) Contrasting various metrics for measuring tropical cyclone activity. Terrestrial Atmospheric Oceanic Sciences, 23, 303-316. https://doi.org/10.3319/TAO.2011.11.23.01(A).
Zhang, C. (2005) Madden-Julian Oscillation. Reviews of Geophysics, 43, RG2003. https://doi.org/10.1029/2004RG000158.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2020-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明