參考文獻 |
Beeler, N.M., Tullis, T.E., Blanpied, M.L., Weeks, J.D., Frictional of large displacement experimental faults. Journal of Geophysical Research, 101, B4, 8697-8715, 1996.
Boutareaud, S., Calugaru, D.-G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., Shimamoto, T., Clay-clast aggregates: A new textural evidence for seismic fault sliding?. Geophysical Research Letters, 35, L05302, 2008.
Boutareaud, S., Boullier, A.-M., Andreani, M., Calugaru, D.-G., Beek, P., Song, S.-R., Shimamoto, T., Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research, 115, B02408, 2010.
Brantut N., Schubnel A., Rouzaud J.N., Brunet F., Shimamoto T., High-velocity frictional properties of a clay bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth, 113, B10401, 2008.
Brantut, N., Han, Raehee., Shimamoto. T., Findling, N., Schubnel, A., Fast slip with inhibited temperature rise due to mineral dehydration: Evidence from experiments on gypsum. Geology, 39 (1), 59-62., 2011.
Brodsky, E.E., Kanamori, H., Elastohydrodynamic lubrication of faults. Journal of Geophysical Research: Solid Earth, 106, B8, 16,357-16,374, 2001.
Brodsky, E.E., Rowe, C.D., Meneghini, F., Moore, J.C., A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research, 114, B01303, 2009.
Chen, J., Niemeijer, A.R., Fokker, P.A., Vaporization of fault water during seismic slip. Journal of Geophysical Research: Solid Earth, 122, 4237-4276, 2017a.
Chen, J., Niemeijer, A., Yao, L., Ma, S., Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, 44, 2177-2185, 2017b.
Chester, J.S., Chester, F.M., Kronenberg, A.K., Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437, 2005.
Collettini, C., Di Stefano. G., Carpenter, B., Scarlato, P., Tesei, T., Mollo, S., Trippetta, F., Marone, C., Romeo, G., Chiaraluce, L., A novel and versatile apparatus for brittle rock deformation. International Journal of Rock Mechanics & Mining Sciences, 66, 114-123., 2014.
Cornelio, C., Spagnuolo, E., Di Toro, G., Nielsen, S., Violay, M., Mechanical behavior of fluid-lubricated faults. Nature Communications, 1274, 2019.
Dieterich, J., A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99, B2, 1994.
Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., Spada, G., Alessandroni, R., Romeo, G., Di Stefano, G., Smith, S., Spagnuolo, E., Mariano, S., From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). Rendiconti Lincei, 1-20., 2010.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., Fault lubrication during earthquakes. Nature, 471, 494-498. 2011.
Faulkner, D.R., Mitchell, T.M., Jensen, E., Cembrano, J., Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research: Solid Earth, 116, B05403, 2011.
Han, R., Hirose, T., Jeong, G.Y., Ando, J., Mukoyoshi, H., Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications. Journal of Geophysical Research, 41, 2014.
Heaton, T.H., Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64 (1), 1-20., 1990.
Homola. A., Israelachvili. J.N., Gee. M.L., McGuiggan. P.M., Measurement of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid films. Journal of Tribology, 111, 675-682, 1989.
Ida, Y., Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77, 1972.
Israelachvili, J., McGuiggan, P.M., Homola, A.M., Dynamic properties of molecularly thin liquid films. Science, 240, 189-191, 1988.
Jaeger, J.C., Friction of rocks and stability of rock slopes. Geotechnique, 21, 97-134, 1971.
Kitajima, H., Chester, F.M., Chester, J.S., Dynamic weakening of gouge layers in high-speed shear experiments: Assessment of temperature-dependent friction, thermal pressurization, and flash heating. Journal of Geophysical Research, 116, B08309, 2011.
Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., Taira, A., Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 5, 646-650, 2012.
Kohli, A.H., Goldsby, D.L., Hirth, G., Tullis, T., Flash weakening of serpentinite at near-seismic slip rates. Journal of Geophysical Research, 116, B03202, 2011.
Kuo, L.-W., Di Felice, F., Spagnuolo, E., Di Toro, G., Song, S.-R., Aretusini, S., Li, H., Suppe, John., Si, J., Wen, C.-Y., Fault gouge graphitization as evidence of past seismic slip. Geology, 45 (11), 979-982, 2017.
Lu, Y., Ma, S., Platt, J.D., Niemeijer, A.R., Shimamoto, T., The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities. Geology, 44, 63-66, 2016.
Ma, K.-F., Mori, J., Lee, S.-J., Yu, S.B., Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society America, 91 (5), 1069-1087., 2000.
Ma, S., Shimamoto, T., Yao, L., Togo, T., Kitajima, H., A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthquake Science, 27, 469-497, 2014.
Major, J.J., Pierson, T.C., Debris flow rheology: experimental analysis of fine-grained slurries. Water Resources Research, 28, 841-857, 1992.
Mizoguchi, K., Hirose, T., Shimamoto. T., Fukuyama, E., Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308, 2007.
Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics, 471, 285-296, 2009b.
Moore, D.E., Lockner, D.A., Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research, 109, B03401. 2004.
Nielsen, S., Spagnuolo, E., Violay, M., Smith, S., Di Toro, G., Bistacchi, A., G: Fracture energy, friction and dissipation in earthquakes. Journal of Deismology, 20, 1187-1205, 2016.
Niemeijer, A., Marone, C., Elsworth, D., Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments. Journal of Geophysical Research, 113, B04204, 2008.
Niemeijer, A., Di Toro, G., Griffith, W.A., Bistacchi, A., Smith, S.A.F., Nielsen, S., Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2-36., 2012.
Orellana, L.F., Scuderi, M.M., Collettini, C., Violay, M., Do scaly clays control seismicity on faulted shale rocks?. Earth and Planetary Science Letters, 488, 59-67., 2018.
Proctor, B.P., Mitchell, T.M., Hirth, G., Goldsby, D., Zorzi, F., Platt, J.D., Di Toro, G., Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 119, 8107-8131, 2014.
Rice, J.R., Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111, 2006.
Rowe, C.D., Kirkpatrick, J.D., Brodsky, E.E., Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters, 335-336, 154-166, 2012.
Ruina, A., Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88, B12, 10,359-10,370, 1983.
Scholz, C. H., The mechanics of earthquakes and faulting. Cambridge, Cambridge University Press, 439, 1990.
Shen, Z.-K., Sun, J., Zhang, P., Wan, Y., Wang, M., Burgmann, R., Zeng, Y., Gan, W., Liao, H., Wang, Q., Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2, 728-724, 2009.
Shimamoto, T., Tsutsumi, A., A new rotary-shear high-speed friction testing machine its basic design and scope of research. Journal of the Tectonic Research Group of Japan, 39, 65-78 (in Japanese with English abstract). 1994.
Sibson, R.H., Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature, 243, 66-68, 1973.
Sibson, R.H., Fault rocks and fault mechanisms. Geological Society of London Journal, 133, 191-231, 1977.
Sibson, R.H., Earthquakes and rock deformation in crustal fault zones. Annual Review of Earth and Planetary Sciences, 14, 149-175, 1986.
Smith, S.A.F., Di Toro, G., Kim, S., Ree, J.-H., Billi, A., Spless, R., Coseismic recrystallization during shallow earthquake slip. Geology, 41 (1), 63-66., 2013.
Smith, S.A.F., Nielsen, S., Di Toro, G., Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth and Planetary Science Letters, 413, 25-36, 2015.
Sone, H., Shimamoto, T., Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience, 2, 705-708, 2009.
Tsutsumi, A., Shimamoto, T., Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102, 240-248, 1996.
Yao, L., Ma, S., Chen, J., Shimamoto, T., He, H., Flash heating and local fluid pressurization lead to rapid weakening in water-saturated fault gouges. Journal of Geophysical Research: Solid Earth, 123, 9084-9100, 2018.
李羿葦,「不同排水速度/滑移速度條件下高嶺土之摩擦特性探討」,國立中央大學應用地質研究所,碩士論文,民國一百零六年六月。
|