博碩士論文 106622013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.228.220.31
姓名 葉政凱(Zheng-Kai Ye)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 基於深度學習的電阻率成像技術之研究
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於現有的電阻率成像流程,每次成像皆需要耗費較長時間,並且容易受到人為操作影響,所以不易施行在自動化系統上。上述問題前人嘗試使用神經網路來解決。然而,前人所使用的神經網路相對於現今的深度神經網路,較難以完成困難的任務,且前人亦沒有釋出可供參考的套件,令往後的研究均要重複編寫相對應的程式碼。有鑑於此,本研究的重點在於應用深度學習技術,開發一套電阻率成像套件。本套件的正演模擬部分,是使用Pidlisecky & Knight(2008)開發的電位模擬程式;神經網路部分則建立在以Tensorflow為後端的Keras之上。
我們分別使用合成資料及野外資料,對本研究建立之成像流程進行測試。合成資料部分,我們設計五種不同配置的訓練資料,分別訓練出五個神經網路,並採用層狀、雙塊體及多塊體的電阻率合成模型,評估神經網路的預測能力,藉此觀察不同操作所帶來的效應。此外,我們將EarthImager 2D反演之電阻率剖面與神經網路預測之電阻率剖面進行比較,以找出這些剖面之間的差異;野外資料部分,我們採用2015年10月10日至10月21日,永康場址南北向測線所量測的資料。永康場址於2015年10月13日至10月18日,曾進行整治藥劑的灌注試驗。灌注試驗造成的電阻率變化能否表現在電阻率剖面上,或可作為評價本研究之成像流程的指標。對於野外資料的測試,我們設計兩組訓練資料,一組基於常見地質材料進行設計,另一組則參考岩芯資料進行設計。最終結果顯示基於先驗資訊所訓練出的神經網路,對於本場址具有較良好的預測能力。然而,野外資料的品質不佳,致使運用傳統反演也難以獲得良好的電阻率剖面,自然也難以觀察到整治藥劑的影響。
現階段本研究建構的套件,嵌入現行的資料處理系統相對簡易、快速,且訓練好的神經網路可以大幅縮減實際成像時間。此外,對於具有相似場址條件的相同陣列,可以套用已訓練的模型。更重要的是,此套件的工作流程可加入不同觀測資料,亦可供不同反演問題作為參考。除上述優點外,此套件亦有缺點。例如:訓練階段需花費大量算力、預測的電阻率剖面難以看到細微構造、資料品質及缺失值影響預測結果等。因此後續仍需改善套件。
摘要(英) Today’s resistivity imaging processes not only take a long time to get one result, but also sensitive to human manipulation, making it difficult to apply to an automatic system. Some studies using neural networks have attempted to solve this problem, but neural networks in these studies have less inference power than modern deep neural networks. Besides, these studies haven’t released a toolbox for reference, so those who study the same research field need to reproduce the corresponding workflow. In the light of this, the goal of my study is to develop a resistivity imaging toolbox based on deep learning. The forward simulation part of this toolbox is a potential simulation program developed by Pidlisecky & Knight (2008); the neural network part is built upon Keras with Tensorflow backbone.
We used synthetic data and field data to test the electrical resistivity imaging process established in this study. In the synthetic data section, we designed five configurations of training data for training neural networks. Then, we used layered, double-block and multi-block resistivity models to evaluate the predictive ability of neural networks. From the result of resistivity profiles, we can observe the effects of different operations on training data. In addition, we compared the resistivity profiles produced by EarthImager 2D and neural networks to observe the differences between these profiles. In the field data section, we used the data measured by the north-south array at the Yongkang site from October 10 to October 21, 2015. The remediation reagent injection was implemented at the Yongkang site from October 13 to October 18, 2015. Whether the change in resistivity caused by the injection can be observed in the resistivity profile can be used as an indicator for evaluating the imaging procedure of this study. For field data testing, we designed two training dataset, one based on common geological materials and the other based on core data. The final result shows that the neural network trained based on prior information has a good predictive power for YongKang site. However, the quality of the field data is not good, making it difficult to obtain a well resistivity profile even with conventional inversion. Therefore, it is difficult to observe the influence of the remediation reagent.
The toolbox constructed in this study is easily embedded in the present data processing system. The trained model can greatly reduce the actual imaging time, and it may be applied to the same array with similar site conditions. More importantly, the workflow of this toolbox can add different observations data and can be used as a reference for different inversion problems. However, this toolbox has both advantages and disadvantages. The training phase requires a lot of computational resource, the predicted resistivity profile is difficult to see the fine structure, and the data quality and missing values affect the prediction results. Thus, we will continuously improve this toolbox in the future.
關鍵字(中) ★ 深度學習
★ 電阻率成像
關鍵字(英) ★ deep learning
★ electrical resistivity imaging
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章、緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 本文架構 3
第二章、理論方法 4
2.1 正演模擬簡介 4
2.2 傳統反演簡介 6
2.2.1 阻尼最小平方法反演(Damped Least Squares Inversion) 6
2.2.2 平滑約束反演(Smooth Model Inversion) 7
2.2.3 穩健反演(Robust Inversion) 7
2.3 深度學習簡介 7
2.3.1 單元(Unit) 7
2.3.2 層(Layer) 8
2.3.3 通用近似性質(Universal Approximation Property) 9
2.3.4 梯度下降法(Gradient Descent) 9
2.3.5 反向傳播算法(Back-Propagation) 12
2.3.6 激勵函數(Activation Function) 14
2.3.7 泛化(Generalization) 15
第三章、合成資料之測試 24
3.1 訓練神經網路及其前置作業 24
3.1.1 設定電極陣列及合成模型 24
3.1.2 生成資料 24
3.1.3 訓練神經網路 26
3.2 電阻率剖面 27
第四章、野外資料之測試 49
4.1 場址及陣列簡介 49
4.2 訓練神經網路及其前置作業 50
4.2.1 生成資料 50
4.2.2 訓練神經網路 50
4.3 電阻率剖面 51
第五章、討論與結論 71
5.1 討論 71
5.2 結論 72
5.3 未來展望 73
參考文獻 83
參考文獻 Advanced Geosciences, Inc. (2009) Instruction Manual for EarthImager 2D, Version 2.4.0, Resistivity and IP Inversion Software.
Araya-Polo, M., Jennings, J., Adler, A. & Dahlke, T. (2018) Deep-learning tomography. The Leading Edge, 37, 58–66.
Baydin, A.G., Pearlmutter, B.A., Radul, A.A. & Siskind, J.M. (2018) Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18, 1–43.
Bengio, Y. & LeCun, Y. (2007) Scaling learning algorithms towards AI. Large-scale kernel machines, 34, 1–41.
Calderón‐Macías, C., Sen, M.K. & Stoffa, P.L. (2000) Artificial neural networks for parameter estimation in geophysics. Geophysical Prospecting, 48, 21–47. doi:10.1046/j.1365-2478.2000.00171.x
Conway, D., Alexander, B., King, M., Heinson, G. & Kee, Y. (2019) Inverting magnetotelluric responses in a three-dimensional earth using fast forward approximations based on artificial neural networks. Computers & Geosciences, 127, 44–52. doi:10.1016/j.cageo.2019.03.002
Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2, 303–314.
Dey, A. & Morrison, H.F. (1979) Resistivity modelling for arbitrarily shaped two‐dimensional structures. Geophysical Prospecting, 27, 106–136.
El-Qady, G. & Ushijima, K. (2001) Inversion of DC resistivity data using neural networks. Geophysical Prospecting, 49, 417–430.
Gatys, L.A., Ecker, A.S. & Bethge, M. (2016) Image style transfer using convolutional neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2414–2423.
Goodfellow, I., Bengio, Y. & Courville, A. (2016) Deep learning, MIT press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., et al. (2014) Generative adversarial nets. Advances in neural information processing systems, pp. 2672–2680.
Graves, A., Mohamed, A. & Hinton, G. (2013) Speech recognition with deep recurrent neural networks. 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649, IEEE.
He, K., Zhang, X., Ren, S. & Sun, J. (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision, pp. 1026–1034.
He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., et al. (2012) Deep neural networks for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29.
Ho, T.L. (2009) 3-D inversion of borehole-to-surface electrical data using a back-propagation neural network. Journal of Applied Geophysics, 68, 489–499.
Hornik, K., Stinchcombe, M. & White, H. (1989) Multilayer feedforward networks are universal approximators. Neural networks, 2, 359–366.
Karpathy, A. (2018) Stanford University CS231n: convolutional neural networks for visual recognition. URL: http://cs231n. stanford. edu/syllabus. html.
Krizhevsky, A., Sutskever, I. & Hinton, G.E. (2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, pp. 1097–1105.
LeCun, Y., Bengio, Y. & Hinton, G. (2015) Deep learning. nature, 521, 436.
Levenberg, K. (1944) A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2, 164–168.
Long, J., Shelhamer, E. & Darrell, T. (2015) Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440.
Maas, A.L., Hannun, A.Y. & Ng, A.Y. (2013) Rectifier nonlinearities improve neural network acoustic models. Proc. icml, Vol. 30, p. 3.
Maiti, S., Erram, V.C., Gupta, G. & Tiwari, R.K. (2012) ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Journal of Hydrology, 464, 294–308.
Marquardt, D.W. (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11, 431–441.
McCulloch, W.S. & Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115–133.
Mhaskar, H., Liao, Q. & Poggio, T. (2017) When and Why Are Deep Networks Better Than Shallow Ones? Thirty-First AAAI Conference on Artificial Intelligence, Presented at the Thirty-First AAAI Conference on Artificial Intelligence. Retrieved from https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14849
Moradi, S., Trad, D. & Innanen, K.A. (2018) Quantum computing in geophysics: Algorithms, computational costs, and future applications. in SEG Technical Program Expanded Abstracts 2018, pp. 4649–4653, Society of Exploration Geophysicists.
Neyamadpour, A., Taib, S. & Abdullah, W.W. (2009) Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application. Computers & Geosciences, 35, 2268–2274.
Perol, T., Gharbi, M. & Denolle, M. (2018) Convolutional neural network for earthquake detection and location. Science Advances, 4, e1700578.
Pidlisecky, A. & Knight, R. (2008) FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code. Computers & Geosciences, 34, 1645–1654.
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. (2017) Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. International Journal of Automation and Computing, 14, 503–519.
Puzyrev, V. (2018) Deep learning electromagnetic inversion with convolutional neural networks. arXiv preprint arXiv:1812.10247.
Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. (2016) You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788.
Ren, S., He, K., Girshick, R. & Sun, J. (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, pp. 91–99.
Rosenblatt, F. (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65, 386.
Rosenblatt, F. (1961) Principles of neurodynamics. perceptrons and the theory of brain mechanisms, Cornell Aeronautical Lab Inc Buffalo NY.
Ruder, S. (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1988) Learning representations by back-propagating errors. Cognitive modeling, 5, 1.
Simonyan, K. & Zisserman, A. (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Sonoda, S. & Murata, N. (2017) Neural network with unbounded activation functions is universal approximator. Applied and Computational Harmonic Analysis, 43, 233–268.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014) Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15, 1929–1958.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., et al. (2015) Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9.
Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., et al. (2016) Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.
Zhang, G., Wang, Z. & Chen, Y. (2018) Deep learning for seismic lithology prediction. Geophysical Journal International, 215, 1368–1387.
Zhu, W. & Beroza, G.C. (2018) PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216, 261–273.
許芳鳴,以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係,國立中央大學,碩士論文,2015年。
莊詠傑,應用自然電位法於土壤與地下水汙染場址的監測研究,國立中央大學,碩士論文,2016年。
指導教授 陳建志 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明