博碩士論文 106622016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.210.24.208
姓名 賴思穎(Szu-Ying Lai)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 應用高解析反射震測探討花東縱谷地下構造
(Subsurface Structure Investigation of the Longitudinal Valley, Eastern Taiwan from High-Resolution Seismic Reflection Data)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 東台灣花東縱谷位於歐亞板塊與菲律賓海板塊的縫合帶,在其東北方有琉球隱沒系統;而南方有呂宋島弧隱沒系統,介於海岸山脈地質區與中央山脈地質區之間。縱谷表層覆蓋了第四紀沖積層,其中,長達150公里的花東縱谷活動斷層系統貢獻了每年約三公分的壓縮量,佔台灣總板塊聚合量八公分的三分之一,而近一百年來在花東縱谷密集的地震分布也暗示花東縱谷活躍的構造特性。為探討縱谷深度兩公里內的地下構造,本研究利用高解析反射震測法,於花東縱谷南段的東里、池上、關山與鹿野等地區,以雙震盪震源車為震源施測四條長二至四公里,近垂直縱谷走向的測線,再結合前人於花東縱谷北段的反射震測剖面,討論縱谷內地層的變化。
震測剖面顯示縱谷下方的基盤向東傾斜,並且縱谷下呈現楔狀的沉積盆地型態,其上覆蓋的沖積層與沉積層普遍朝東增厚。在東里與池上地區,基盤深度約為0.2至0.4秒雙程走時 (約200至400公尺),以上覆蓋近水平堆積的沖積層,並且在靠近中央山脈地質區一側,基盤深度變淺,而池上斷層在東里的G剖面造成淺部沖積層的不連續。在關山地區,向東傾斜的基盤深度可及0.7秒 (約900公尺) ,研判往縱谷東側可及更深。而鹿野地區下的基盤深度可及1秒 (約1.7公里),鹿野斷層在剖面J的西側使淺部沖積層凸起。結合前人於花東縱谷壽豐至玉里的震測剖面,整體顯示縱谷中的沖積層有往南遞減的趨勢。
而在瑞穗以南的剖面中,和光復以北顯示的連續沉積層相比,可以觀察到朝東北傾沒的背斜構造、東傾的卑南山礫岩、受斷層變形的淺部沖積層與往南逐漸增厚的利吉層,透漏花東縱谷中南段地層的傾斜與變形可能與縱谷中活動斷層的性質與中南段海岸山脈朝西北向的擠壓有關。
摘要(英) Four seismic reflection profiles were used to construct the subsurface structures below the southern Longitudinal Valley (LV) in eastern Taiwan, a suture zone between Eurasian and Philippine Sea plates. In the Longitudinal Valley, considerable seismicity as well as significant crustal deformation are accommodated by the Longitudinal Valley fault system (LVF). Therefore, a thorough subsurface structure geometry is required to constrain this seismic active zone. In this study, we aim to better understand the subsurface structures in the upper 2 km of the southern LV. We conducted high-resolution seismic reflection survey across the LVF from Donli to Luyeh in 2017. We used two mini Vibroseis trucks with sweeping frequencies from 30-200 Hz as the source and the CDP spacing is 2.5 m with the nominal 30 fold.
The stacked seismic profiles reveal an east-dipping basement beneath the LV, which is characterized by a wedge-shaped basin bearing the sedimentary strata and the alluvium that thicken eastward. In Chihshang, the basement reaches 0.4 s (two-way travel time, TWT) and becomes shallower in the Central Range area. In Guanshan, the basement reaches 0.7 s and reaches near 1s (around 1.7 km in depth) in Luyeh. It is interesting to note that the thickness of the alluvium in the LV tend to decrease to the south if comparing the results with previous seismic profiles in the northern LV. Furthermore, the Chihshang fault is observed in the profile G in Donli which causes the undulations in the shallow alluvium, and the Luyeh fault is traced in the west of the profile J north of Peinanshan.
Integrating the seismic profiles from previous to this studies in the southern part of the Longitudinal Valley, it is worthwhile to note the northeast-plunging anticline, east-dipping Peinanshan Conglomerate, the deformation of the alluvium due to the faults and the thickening Lichi mélange south of Guanfu. The deformation and tilting of the strata seem to relate to the faulting characteristics in the LV and the compression toward the northwest from the southern Coastal Range.
關鍵字(中) ★ 高解析反射震測
★ 花東縱谷
★ 台灣
關鍵字(英) ★ High-resolution seismic reflection
★ the Longitudinal Valley
★ Taiwan
論文目次 摘要 i
ABSTRACT ii
致謝 iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 MOTIVATION AND OBJECTIVES 1
1.2 STRUCTURE OF THE THESIS 2
Chapter 2 Geological Setting 5
2.1 REGIONAL TECTONIC SETTING 5
2.2 LOCAL GEOLOGY 5
2.2.1 Rock-stratigraphic units 5
2.2.2 Fault distribution 8
2.3 LITERATURE REVIEW 9
2.3.1 Crustal deformation 9
2.3.2 Electric resistivity 9
2.3.3 Land seismic reflection and refraction 10
2.3.4 Offshore seismic reflection 10
2.3.5 Seismicity and seismic tomography 11
2.3.6 Gravity and magnetic anomaly 11
2.3.7 Borehole observations 12
Chapter 3 Methods 25
3.1 SEISMIC REFLECTION PRINCIPLES 25
3.2 FIELD EQUIPMENT 26
3.3 DATA ACQUISITION AND FIELD LAYOUT 27
3.3.1 Data acquisition 27
3.3.2 Field layout 28
3.4 SEISMIC DATA PROCESSING 34
3.4.1 Pre-stack 37
3.4.2 Stacking 43
3.4.3 Post-stack 45
Chapter 4 Results and interpretation 49
4.1 PROFILE G 49
4.2 PROFILE H 53
4.3 PROFILE I 56
4.4 PROFILE J 59
Chapter 5 Discussion 64
5.1 BASEMENT PATTERN BENEATH THE LONGITUDINAL VALLEY 64
5.2 NORTH EXTENSION OF THE PEINANSHAN CONGLOMERATE 66
5.3 SPATIAL VARIATION OF THE SEDIMENTARY STRATA IN THE LV 67
Chapter 6 Conclusion 74
References 75 
參考文獻 [1] J. Angelier, H.T. Chu and J.C. Lee, “Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan”, Tectonophysics, 274, pp. 117-144, 1997.
[2] E. Barrier et al., “Tectonic analysis of compressional structure in an active collision zone: the deformation of the Pinanshan conglomerates, eastern Taiwan”, Proceedings-Geological Society of China, 25, pp. 123-138, 1982.
[3] C.C. Biq, “Dual-trench structure in the Taiwan-Luzon region”, Proceedings of Geological Society of China, 15, pp. 65-75, 1972.
[4] C.C. Biq, “Present-day manner of movement of the Coastal Range, eastern Taiwan, as reflected by triangulation changes”, Mem. Geol. Soc. China, 6, pp. 35-40, 1984.
[5] J. Champenois et al., “Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data”, Earth and Planetary Science Letters, pp. 337–338, 2012.
[6] P.Y. Chang et al., “Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan”, Journal of Applied Geophysics, 153, pp. 127-135, 2018.
[7] W.S. Chen and Y. Wang, “The Plio-Pleistocene basin development in the Coastal Range of Taiwan”, Symposium on the Arc-Continent Collision and Orogenic Sedimentation in Eastern Taiwan and Ancient Analogs, 21-22, 1988.
[8] W.S. Chen et al., “Neotectonic significance of the Chimei fault in the Coastal Range, Eastern Taiwan”, Proceedings- Geological Society of China, 34(34), 1991.
[9] W.S. Chen et al., “Late Holocene paleo-earthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan” Earth and Planetary Science Letters, 264(3-4), pp. 420-437, 2007.
[10] W.R. Chi, “Calcareous nannoplankton biostratigraphy and stratigraphic correlation of the Mesozoic and Cenozoic sequences in central, southern, and eastern Taiwan, Republic of China”, 10th Convention Indonesian Petrol. Assoc., pp. 3-49, 1981.
[11] W.R. Chi, “Ages of the Milun and Pinanshan Conglomerates and their bearings on the Quaternary movement of eastern Taiwan”, 1983.
[12] L.K. Chien, “An Electric Resistivity Study of the Faults in the Taitung Longitudinal Valley, Eastern Taiwan”, National Central University, PHD Thesis, 2015.
[13] J. Chow et al. “Paleoseismic event and active faulting: From ground penetrating radar and high-resolution seismic reflection profiles across the Chihshang Fault, eastern Taiwan”, Tectonophysics, 333(1), pp. 241-259, 2001.
[14] T.L. Hsu, “Geology of the Coastal Range, eastern Taiwan”, Bull. Geol. Surv. Taiwan, 8, pp. 39-64, 1956.
[15] T.L. Hsu, “Neotectonics of the Longitudinal Valley, eastern Taiwan”, Bull. Geol. Surv. Taiwan, 25, pp. 53-62, 1976.
[16] H. Kuo-Chen et al., “Relocation of Eastern Earthquakes and Tectonic implications”, Terrestrial Atmospheric and Oceanic Sciences, 15, pp. 647-666, 2004.
[17] H. Kuo-Chen et al., “2003 Mw6.8 Chengkung earthquake and its related seismogenic structures”, Journal of Asian Earth Sciences, 31(3,15), pp. 332-339, 2007.
[18] J.C. Lee et al., “Paleomagnetic evidence for a diachronic clockwise rotation of the Coastal Range, eastern Taiwan”, Earth and Planetary Science Letters, 104(2-4), pp. 245-257, 1991.
[19] Lee et al., “Plate-boundary strain partitioning along the sinistral collision suture of the Philippine and Eurasian plates: Analysis of geodetic data and geological observation in southeastern Taiwan”, Tectonics, 17(6), pp. 859-871, 1998.
[20] J. Malavieille et al., “Arc-Continent collision in Taiwan: New marine observations and tectonic evolution”, Geology and geophysics of an arc-continent collision, Taiwan, ROC, 2002.
[21] Oz Yilmaz., Seismic Data Analysis., Society of Exploration Geophysicists, 2001.
[22] M. Peyret et al., “Present-day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS-InSAR analysis of the ERS satellite archives”, Journal of Geophysical Research, 116, 2011.
[23] R.E. Sheriff, Encyclopedic dictionary of exploration geophysics., Society of Exploration Geophysics, 1991.
[24] J.B.H. Shyu et al., “Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan”, Tectonics, 27, 2008.
[25] J.B.H. Shyu, C.F. Chen and Y.M. Wu, “Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture”, Tectonophysics, 692, pp. 295-308, 2016.
[26] John Suppe, “Kinematics of arc-continental collision, flipping of subduction and back-arc spreading near Taiwan” Mem. Geol. Soc. China, 6, pp. 21–33, 1984.
[27] M.T. Tanar et al., “A unified method for 2D and 3D refraction statics”, Geophysicists, 63(1), pp. 260-274, 1998.
[28] L.S. Teng, “Geotectonic evolution of Late Cenozoic arc-continent collision in Taiwan”, Tectonophysics, 183, pp. 57-76, 1990.
[29] M.Y. Thomas et al., “Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan”, Tectonophysics, 632, pp. 48-63, 2014.
[30] M.Y. Thomas et al., “Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan” Journal of Geophysical Research, Solid Earth, 119(6), 2014.
[31] L.T. Tong and T.R. Guo, “Gravity Terrain Effect of the Seafloor Topography in Taiwan” Terrestrial Atmospheric and Oceanic Sciences, 18, pp. 699-713, 2007.
[32] Y.B. Tsai et al., “A Seismic Refraction Study of Eastern Taiwan” Petroleum Geology of Taiwan, 11, pp. 165-182, 1974.
[33] C.Y. Wang and K.P. Chen, “A Seismic Refraction Profile Across the Longitudinal Valley Near Hualien, Taiwan” Terrestrial Atmospheric and Oceanic Sciences, 8(3), pp. 295-312, 1997.
[34] C.H. Mu et al., “Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan)”, Journal of Structural Geology, 33(4), pp. 743-755, 2011.
[35] York, J.E., “Quaternary faulting in eastern Taiwan”, Bulletin of the Geological Survey of Taiwan, 25, pp. 63-75, 1976.
[36] S.B. Yu and L.C. Kuo, “Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan”, Tectonophysics, 333(1–2), pp. 199-217, 2001.
[37] Mayne, W.H., “Common reflection point horizontal data stacking techniques”, Geophysics, 27(6), pp. 927-938, 1962.
[38] 王執明,王乾盈,「卑南文化公園基地附近地質調查」,國立台灣史前文化博物館報告,共74頁,民國八十年。
[39] 董倫道等,「台灣東部地區空中磁力探測(2/3)」,經濟部中央地質調查所,民國一百零七年。
[40] 何春蓀,臺灣地質概論-臺灣地質圖說明書,經濟部中央地質調查所,共164 頁,民國七十五年。
[41] 姜彥麟,「花東縱谷斷層南段地表變形及斷層運動學分析」,國立臺灣師範大學,碩士論文,民國九十六年。
[42] 紀權窅,「南段花東縱谷之新期構造研究-利吉斷層與鹿野斷層的活動特性」,國立台灣大學,碩士論文,民國九十六年。
[43] 張育誠,「台東縱谷瑞穗至池上地區之地電研究」,國立中央大學,碩士論文,民國九十一年。
[44] 陳文山,王源,十萬分之一海岸山脈地質圖幅,經濟部中央地質調查所,民國八十二年。
[45] 陳文山等,「從古地震研究與GPS資料探討縱谷斷層的分段意義」,經濟部中央地質調查所特刊,20號,第165-191頁,民國九十七年。
[46] 陳文山,「海岸山脈火山島弧碰撞盆地的地層架構與年代」,西太平洋地質科學,第9卷,第67-98頁,民國九十八年。
[47] 陳文山等,「台灣東部碰撞帶孕震構造」,經濟部中央地質調查所特刊,第33號,第123-155頁,民國一百零七年。
[48] 沈弘恩,「台東鹿野地區海岸山脈斷層地下速度構造研究」,國立中正大學,碩士論文,民國一百年。
[49] 曹彥祺、石瑞銓和陳文山,「由淺層反射震測探討錦園與萬安地區之池上斷層地下構造」,經濟部中央地質調查所特刊,24號,第93-110頁,民國九十九年。
[50] 王蘭榛,「鹿野斷層之地下構造研究」,國立中正大學,碩士論文,民國九十七年。
指導教授 郭陳澔 王乾盈(Hao Kuo-Chen Chien-Ying Wang) 審核日期 2019-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明