博碩士論文 106622018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:107.21.85.250
姓名 謝宜廷(I-Ting Hsieh)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用海底仿擬反射訊號深度估算台灣西南海域地溫梯度分布研究
(Geothermal Gradient Estimation from the Depth of Bottom Simulating Reflectors Offshore Southwestern Taiwan)
相關論文
★ 台灣西南外海永安海脊區域之速度構造與天然氣水合物飽和度研究★ 利用TAMS初步分析台灣東部海域海底地震儀資料
★ 由海底地震儀資料探討加瓜海脊鄰近區域之地震構造★ 隱沒帶不同耦合型態的地震特性分析:外部隆起地震與地震所引起的重力位能變化
★ 利用海底地震儀分析颱風對於海底震波雜訊的 影響★ 由海底地震儀資料探討台灣東部海域之地震地體構造
★ 由海底地震儀資料探討宜蘭外海琉球 隱沒帶之地震地體構造★ 全球隱沒帶的板塊撓曲量模擬和地震活動相關性分析
★ 利用寬頻地震儀分析颱風期間的低頻訊號來源★ 利用背景噪訊技術探討台灣近海海底淺層沉積物之剪力波速度
★ 利用海底地震儀資料探討北馬尼拉隱沒帶之地震地體構造★ 由海底地震儀資料探討南沖繩海槽熱液活動
★ 以寬頻地震儀及分壓計之波形分析環境變動過程:與流體力學相關
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 天然氣水合物是一種極具潛力的未來能源,並且已經被廣泛的研究。由科技部及經濟部中央地質調查所資助的數個海洋科學調查航次中,多頻道反射震測航次所提供的資料顯示海底仿擬反射訊號(Bottom Simulating Reflector, BSR)廣泛分布於台灣西南海域。BSR普遍被視為一個重要的分界指標,其上部為富含天然氣水合物的沉積層,下部則不含水合物,而是夾雜著甲烷氣。天然氣水合物的行為深受地溫梯度變化影響,因此詳細調查天然氣水合物賦存地區的熱流變化極具意義。在過去數十年中,前人已經利用利氏高解析度熱探針對台灣西南海域進行高密度的熱流值量測,而本研究利用BSR深度與溫鹽深儀(CTD)提供之底水溫度等資料,估算地溫梯度,並與熱探針現地量測之地溫梯度進行比較。此舉的目的是希望藉由了解兩者間的轉換關係,再透過更為連續與密集之BSR資料獲得更細緻的地溫梯度分布。估算的過程中,對於沉積層的成分組成,以及其平均密度對壓力估算的影響,前人有諸多爭論,主要分為應使用靜岩壓力或靜水壓力兩個派別。根據本研究結果,在足夠深的水域中,不論在靜岩壓力或靜水壓力條件下,利用BSR深度所估算之地溫梯度並無太大差異。而結果也顯示,利用BSR深度估算與熱探針量測所得之地溫梯度大致都相近,但在地質構造有快速變化區域則差異較大,例如變形前緣東側一帶相差約10℃/km,而西側幾乎沒有差值。本研究認為這樣的分布可能是由於BSR所代表的地溫梯度應為短期地質事件發生前沉積層穩定狀態下的結果,而熱探針量測值則代表量測當下近地表環境之地溫梯度所導致。因此,利用BSR深度估算地溫梯度之方法,在較穩定區域的確可以簡便而有效地提供在穩定狀態下更為連續之地溫梯度資料。但一區域之地質環境之改變,則會增加兩者的差值,可以作為初步判斷該環境地質條件改變的根據。
摘要(英) Gas hydrate is a major potential resource of energy and has been widely studied. An abundant distribution of Bottom Simulating Reflectors (BSRs), recognized as the boundary between the upper gas-hydrate bearing sediments and the lower non-bearing sediments, was determined from the seismic profiles collected during numerous oceanographic cruises supported by the Central Geological Survey (CGS) and Ministry of Science and Technology (MOST) in Taiwan. The gas hydrate behavior depends deeply on the variation of geothermal gradient. Therefore, a good understanding about the heat flow variation in the gas-hydrate enriched area is of a great importance. Over the past decades, heat flow measurements have been conducted extensively offshore Taiwan area by using Lister-type high-resolution heat probe. Taking this opportunity, we aim to estimate the geothermal gradient based on the depth of BSRs and the sea bottom temperature collected from Conductivity-Temperature-Depth (CTD) data and compare them with the in-situ measurements. The objective is to evaluate the possibility of obtaining a more detailed and continuous image of the heat flow values based on the relatively wider spread BSR depth data. To do that, we collect seafloor temperature from CTD data, and calculate the temperature at the depth of the BSRs using the pressure estimated from the empirical law. Then the geothermal gradient can be obtained from all these parameters. While calculating the pressure at the depth of BSR, the density of the sedimentary layer containing gas hydrate need to be considered. Intuitively, lithostatic condition is reasonable; however, some other researchers prefer to assume it under the hydrostatic condition. However, our estimations demonstrate that the geothermal gradients under two different conditions show no differences. Hence, this observation may suggest that the BSRs-based geothermal gradients represent the steady state geothermal gradients before the short term geological event, and the geothermal gradients measured by heat probe represent the in-situ condition at the measuring time. By comparing our result with the in-situ measurements, the values estimated in our study are slightly higher than that obtained from in-situ measurements with a magnitude of 10℃/km in the eastern side of Deformation Front, and there is almost no difference between them in the western side. The differences also show the abnormal high differences in the rear segment nearby Yung-An Ridge. Hence, the BSRs-based estimation gives us the more continuous geothermal gradients under the steady state. Having the contraction with the geothermal gradients by heat probe can make effort to evaluate the regional geological environments.
關鍵字(中) ★ 台灣西南海域
★ 海底仿擬反射訊號
★ 地溫梯度分布
關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iv
目 錄 v
圖 目 vii
第一章、緒論 1
1.1 天然氣水合物概述 1
1.2 研究目的 2
1.3本研究章節內容規劃 2
第二章、研究區域與前人研究 5
2.1研究區域與區域地體架構 5
2.2前人研究 6
第三章、研究方法與資料處理 16
3.1本研究使用資料 16
3.1.1 BSR訊號資料 16
3.1.2 地熱探針資料 17
3.2 使用BSR深度估算地溫梯度之方法與流程 18
第四章、研究成果 34
4.1 BSR深度估算之地溫梯度分布 34
4.2 地溫梯度差值分布 35

第五章、研究成果討論 39
5.1地質作用對地溫梯度估算可能造成的影響 39
5.2 地溫梯度差值所表現之地質作用討論 41
5.2.1 變形前緣 41
5.2.2 永安海脊南方區域 43
5.2.3 高屏峽谷中游段 44
第六章、結論 50
參考文獻 53
參考文獻 英文部分
Ashi, J., Kuramoto, S., Morita, S., Tsunogai, U., Goto, S., Kojima, S., Okamoto, T., Ishimura, T., Ijiri, A., Toki, T., Kudo, S., Asai, S., and Utsumi, M., “Structure and cold seep of the Nankai accretionary prism off Kumano outline of the off Kumano survey during YK01-04 Leg 2 cruise”, JAMSTEC J. Deep Sea Res., Vol. 20, pp. 1–8, 2002. (in Japanese, with abstract in English)
Chen, L., “Geological Processes Related to Seafloor Thermal Structures offshore SW Taiwan”, The doctoral dissertation of the institute of Geoscience National Taiwan University, Taiwan, pp. 140, 2014.
Decourt, B., Alias, S., Debarre, R., and Askew, P., “Taking the Heat out of the Burning-ice Debate: Potential and Future of Gas Hydrates”, Society of Petroleum Engineers, SPE Asia Pacific Unconventional Resources Conference and Exhibition, 2015.
Dholabhai, P. D., Englezos, P., Kalogerakis, N., & Bishnoi, P. R., “Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions”, The Canadian journal of chemical engineering, Vol. 69, no. 3, pp. 800-805, 1991.
Dickens, G. R., & Quinby‐Hunt, M. S., “Methane hydrate stability in seawater”, Geophysical Research Letters, Vol. 21, no. 19, pp. 2115-2118, 1994.
Dickens, G. R., and Quinby-Hunt, M. S., “Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications”, Journal of Geophysical Research, Vol. 102, no. B1, pp. 773-783, 1997.
Ewing, J., and Hollister, C., “Regional aspects of deep sea drilling in the western North Atlantic”, Initial Reports of the Deep Sea Drilling Project, Vol. 11, pp. 951-973, 1972.
Fink, C.R., and Spence, G.D., “Hydrate distribution off Vancouver Island from multifrequency single-channel seismic reflection data”, J. Geophys. Res., Vol. 104, pp. 2909–2922, 1999.
Ganguly, N., Spence, G. D., Chapman, N. R., and Hyndman, R. D., “Heat flow variations from bottom simulating reflectors on the Cascadia margin”, Marine Geology, Vol. 164, pp. 53-68, 2000.

Hanumantha Rao, Y., Subrahmanyam, C., R. Sharma, S., A. Rastogi, A., and Deka, B., “Estimates of geothermal gradients and heat flow from BSRs along the Western Continental Margin of India”, Geophysical Research Letters, Vol. 28, no. 2, pp. 355-358, 2001.
Hyndman, R. D., Wang, K., Yuan, T., and Spence, G. D., “Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms: The Cascadia margin off Vancouver Island”, Journal of Geophysical Research: Solid Earth, Vol. 98, no. B12, pp. 21865-21876, 1993.
Kaul, N., Rosenberger, A., and Villinger, H., “Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan”, Marine Geology, Vol. 164, no. 1-2, pp. 37-51, 2000.
Kinoshita, M., Moore, G. F., and Kido, Y. N. “Heat flow estimated from BSR and IODP borehole data: Implication of recent uplift and erosion of the imbricate thrust zone in the Nankai Trough off Kumano”, Geochemistry, Geophysics, Geosystems, Vol. 12, no. 9, 2011.
Kvenvolden, K.A., and Lorenson, T.D., “The global occurrence of natural gas hydrate”, Geophysical monograph, Vol. 124, pp. 3-18, 2001.
Lin, A. T., Liu, C. S., Lin, C. C., Schnürle, P., Chen, G. Y., Liao, W. Z., Teng, L. S., Chuang, H. J., and Wu, M. S., “Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan”, Marine geology, Vol. 255, pp. 186-203, 2008.
Liu, C.-S., Schnürle, P., Wang, Y., Chung, S.-H., Chen, S.-C., and Hsiuan, T.-H., “Distribution and Characters of Gas Hydrate Offshore of Southwestern Taiwan”, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 17, no. 4, pp. 615-644, 2006.
Martin, V., Henry, P., Nouzé, H., Noble, M., Ashi, J., and Pascal, G., “Erosion and sedimentation as processes controlling the BSR-derived heat flow on the Eastern Nankai margin”, Earth and Planetary Science Letters, Vol. 222, no. 1, pp. 131-144, 2004.
Peng, Y. S., “The effect of heat flow on the base of gas hydrate stability zone in the Yung-An Ridge offshore southwestern Taiwan”, Master thesis of National Taiwan University, Taiwan, pp. 89, 2012. (in Chinese with English abstract)

Phrampus, B. J., Harris, R. N., and Tréhu, A. M., “Heat flow bounds over the Cascadia margin derived from bottom simulating reflectors and implications for thermal Models of subduction”, Geochemistry, Geophysics, Geosystems, Vol. 18, no. 9, 2017.
Reed, D. L., Lundberg, N., Liu, C. S., and Kuo, B.T., “Structural relations along the margin of the offshore Taiwan accretionary wedge: Implications for accretion and crustal kinematics”, Acta Oceanographica Taiwanica, Vol. 30, pp. 105-122, 1992.
Seno, T., S. Stein, and A. E. Gripp, “A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data”, Journal of Geophysical Research, Vol. 98, pp. 17941-17948, 1993.
Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., Worzel, J. L., “Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises”, American Association of Petroleum Geologists, Vol. 63, pp. 2204– 2213, 1979.
Shyu, C. T., Chang, H. I., “Determination of seafloor temperature using data from high-resolution marine heat probes”, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 16, pp. 137–153, 2005.
Shyu, C.-T., Chen, Y.-J., Chiang, S.-T., and Liu, C.-S., “Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan”, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 17, no. 4, pp. 845-869, 2006.
Singh, S. C., and T. Minschull, “Velocity structure of a gas hydrate reflector at Ocean Drilling program site 889 from a global seismic waveform inversion”, Journal of Geophysical Research, Vol. 99, pp. 24221-24233, 1994.
Sloan, E. D., “Clathrate Hydrates of Natural Gases, 1st ed.”, Marcel Dekker, New York, pp. 641, 1990.
Su, C. C., Hsu, S. T., Hsu, H. H., Lin, J. Y., & Dong, J. J., “Sedimentological characteristics and seafloor failure offshore SW Taiwan”, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 29, pp. 65-76, 2018.
Yamano, M., Uyeda, S., Aoki, Y., and Shipley, T. H., “Estimates of heat flow derived from gas hydrates”, Geology, Vol. 10, no. 7, pp. 339-343, 1982.
Zwart, G., Moore, J. C., and Cochrane, G. R., “Variations in temperature gradients identify active faults in the Oregon accretionary prism”, Earth and Planetary Science Letters, Vol. 139, no. 3-4, pp. 485-495, 1996.
中文部分
徐春田、喬凌雲(2015),「天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(4/4)天然氣水合物賦存區之地熱調查」,經濟部中央地質調查所報告,第104-11-A號,共86頁。
陳松春、鐘三雄、王詠絢、魏正岳、陳柏淳(2016),「專題報導:台灣海域可燃冰調查」,科學發展,第524期,共6頁。
許樹坤(2008),「台灣西南海域新興能源-天然氣水合物資源調查與評估(1/4)」,經濟部中央地質調查所報告,第97-27號,共132頁。
許樹坤(2013),「天然氣水合物資源潛能調查:高解析聲納調查(2/4)」,經濟部中央地質調查所報告,第102-20號,共169頁。
許樹坤(2014),「天然氣水合物資源潛能調查:高解析聲納調查(3/4)」,經濟部中央地質調查所報告,第103-17號,共246頁。
許樹坤(2015),「天然氣水合物資源潛能調查:高解析聲納調查(4/4)」,經濟部中央地質調查所報告,第104-12號,共230頁。
翁子偉、羅聖宗、黃瑞賢、李建鋒(2013),「南海天然氣水合物分佈與資源量概況」,鑛冶,中國鑛冶工程學會會刊,第五十七卷第二期,pp.56-70。
劉家瑄(2015),「天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(4/4)反射震測與海床聲納迴聲剖面調查研究」,經濟部中央地質調查所報告,第104-11-A號,共86頁。
鐘三雄(2005),「國際天然氣水合物的調查研究與應用」,經濟部中央地質調查所94年度研究發展報告,共129頁
鐘三雄、林殿順、林哲銓、劉家瑄、陳松春、王詠絢、魏正岳、陳柏淳(2016),「台灣西南-南部海域天然氣水合物資源潛能調查研究」,經濟部中央地質調查所105年度特刊,第三十號,pp.1-42。
指導教授 林靜怡(Jing-Yi Lin) 審核日期 2020-3-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明