博碩士論文 106622020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.223.159.195
姓名 鍾佩瑜(Pei-Yu Jhong)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用密集地震網探討花東縱谷北段地下速度構造
(Three-dimensional crustal structure in the northern part of Eastern Taiwan from dense seismic array data sets)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣位於菲律賓海板塊與歐亞板塊的碰撞邊界,而臺灣東部縱谷地區被認為是兩板塊的縫合帶。在縱谷的東邊是以火山島弧組成的海岸山脈地質為主,西邊則是以變質岩組成的中央山脈地質為主。菲律賓海板塊向西北方向隱沒到歐亞板塊下方,造成縱谷北段有著複雜的板塊相互作用。2018年2月發生了規模6.4的花蓮地震,以致多處道路斷裂以及大樓倒塌等嚴重的災情發生。而後郭陳等人(Kuo-Chen et al., 2019)在此佈設了密集的臨時地震陣列以追蹤後續餘震序列,因此對於縱谷北段地區有了更進一步的探討與了解。在本研究中延伸郭陳等人(Kuo-Chen et al., 2019)的餘震序列研究資料並結合2017年架設的密集地震網資料,進一步利用三維速度模型來探討東臺灣縱谷北段的地下構造。
本研究利用聯合體波以及表面波資料的反演方法(Fang et al., 2016),希望藉由結合體波和表面波各自的優點來獲得解析度較高的Vp與Vp/Vs 模型。在逆推過程中使用2,892個地震以及短週期表面波資料。結果顯示重新定位相較於只用一維速度模型定位後的地震還要來得聚集,並且地震深度大約落在5到20公里處。在2017年以及2018年的震源機制解分布比較,可以看到在2017年靠近米崙地區震源機制解是與2018年的餘震類型相同,皆以正斷層機制為主,並對比地表變形的結果顯示與震源機制解分佈是相吻合。從震波速度模型來看,其構造分佈大致吻合縱谷北段的地表地質特徵,在縱谷西邊為中央山脈其岩性為變質岩所組成,縱谷本身與東邊分別以沖積層與火成岩碎屑岩塊為主的海岸山脈,故呈現縱谷西邊速度比起東邊高的現象。然而靠近縱谷下方有一個明顯高低速的介面產生,根據震源機制解以及地震分布,在中央山脈下方有一逆斷層構造可延伸至海岸山脈,而此構造可能與板塊邊界有關,並從南至北的速度剖面中顯示在靠近23.75˚N中央山脈下方有一高速體往上延伸,至花蓮地區中央山脈下高速體並不明顯,推測與菲律賓海板塊逐漸往西北隱沒至中央山脈東翼下方現象有關。
摘要(英) The northern part of eastern Taiwan is situated on the plate boundary between the Philippine Sea plate and the Eurasian plate. The Philippine Sea plate subducts northwestward beneath the Eurasian plate with a very complicated plate interaction in this area. At the surface, the Central Range belongs to the Eurasian plate composed with metamorphic rocks, whereas the Coastal Range belongs to the Philippine Sea plate composed of sedimentary and volcanic rocks. These two geological units are separated by the Longitudinal Valley (LV) as a suture zone.
Seismic tomography is one of powerful tools to investigate the subsurface structures. In the past, a few of high resolution seismic tomography have been performed in this area. Taking the advantage of the data sets of Kuo-Chen et al., (2019) deployed a dense seismic array to capture the aftershock sequence of 2018 Mw6.4 Hualien earthquake and another dense seismic array in 2017, we applied a joint inversion of body and surface wave data to get better Vp and Vp/Vs velocity models. The advantage of this method is the complementary strengths of each data set. A total of 2892 local earthquakes and short period surface wave data were used for inversion. As a result, the earthquakes located with our new velocity model are more clustered than those by using the 1-D model, and the depth range of these events are between 5 and 20 km. Based on the focal mechanisms, the focal mechanisms are dominated by normal faults with few strike-slip faults in Hualien City in our 2017 and 2018 data set. The patterns of our velocity models roughly match the geological units at the surface but provide more information at deeper depths. The velocities in the east of LV are relatively lower than those in the west. Also, an interface between the relatively high and low Vp/Vs ratio zones beneath LV. According to the focal mechanism solution and seismic distribution, the interface could show the geometry of the plate boundary at deeper depths. Another pattern can be found that a high-velocity block extends upward from 20km to 5km in the east flank of LV, which could relate to serpentinized rocks in this region.
關鍵字(中) ★ 花東縱谷
★ 地震層析成像
★ 聯合反演
★ 密集地震網
★ 地震活動
★ 震源機制解
關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 本文架構 2
第二章 文獻回顧 5
2-1 研究區域介紹 5
2-1-1 研究區域地質概況 5
2-1-2 斷層分布 6
2-2 文獻回顧 6
2-2-1 地震活動度與歷史地震 7
2-2-2 速度構造 7
2-2-3 速度與岩石之關聯性 8
2-2-4 地殼變形 9
第三章 研究原理與方法 15
3-1 雙差分地震層析成像(Double-Difference seismic tomography) 15
3-2 表面波直接反演法(Direct inversion of surface wave dispersion) 17
3-3 聯合反演層析法(Joint inversion of body wave and surface wave tomography ) 20
第四章 資料處理與分析 27
4-1 野外儀器介紹 27
4-2 體波資料處理流程 27
4-2-1 長短時窗訊號平均值之比值(STA/LTA ratio) 28
4-2-2 P波初動震源機制解 29
4-3 表面波資料處理流程 29
4-4 聯合反演參數測試 31
4-5 棋盤格測試 32
第五章 結果 49
5-1 地震定位 49
5-2 震源機制解 50
5-3 三維速度構造 50
第六章 討論與結論 65
6-1 速度模型與地震分布、震源機制解比對 65
6-2 震前震後的震源機制解比較 67
6-3 速度模型與其他模型比較 68
6-4 結論 68
參考文獻 74
參考文獻 Aki, K., Christoffersson, A., & Husebye, E. S. (1976). Three-dimensional seismic structure of the lithosphere under Montana LASA. Bulletin of the Seismological Society of America, 66(2), 501-524.
Asano, Y., Saito, T., Ito, Y., Shiomi, K., Hirose, H., Matsumoto, T., Aoi, S., Hori, S., & Sekiguchi, S. (2011). Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, planets and space, 63(7), 29.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-1260.
Biq, C. C. (1971). A fossil subduction zone in Taiwan. Proc. Geol. Soc. China, 14, 146-159.
Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth′s crust. Bulletin of the seismological Society of America, 95(6), 2081-2092.
Chang, C. P., Angelier, J., & Huang, C. Y. (2000). Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1-2), 43-62.
Chang, L.S. (1968). A biostratigraphic study of the Tertiary in Coastal Range, eastern Taiwan, based on smaller foraminifera. (II. Northern Part). Proc. Geol. Soc. China, 11, 19-33.
Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., & Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8).
Christensen, N. I. (1996). Poisson′s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139-3156.
Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761-9788.
Fang, H., Yao, H., Zhang, H., Huang, Y. C., & van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263.
Fang, H., Zhang, H., Yao, H., Allam, A., Zigone, D., Ben‐Zion, Y., Thurber, C. & van der Hilst, R. D. (2016). A new algorithm for three‐dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region. Journal of Geophysical Research: Solid Earth, 121(5), 3557-3569.
Fong, D. C.-L., and M. Saunders (2011). LSMR: An iterative algorithm for sparse least-squares problems, SIAM J. Sci. Comput., 33(5), 2950–2971.
Havskov, J., & Ottemoller, L. (1999). SEISAN earthquake analysis software. Seismological Research Letters, 70(5), 532-534.
Holbrook, W. S., Mooney, W. D., & Christensen, N. I. (1992). The seismic velocity structure of the deep continental crust. Continental lower crust, 23, 1-43.
Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Chen, Y. G. (2012). Seismotectonics of northeastern Taiwan: kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth, 117(B1).
Hyndman, R. D. (1979). Poisson′s ratio in the oceanic crust–a review. In Developments in Geotectonics, 15, 321-333.
Jiang, M., Galvé, A., Hirn, A., De Voogd, B., Laigle, M., Su, H. P., Diaz, J., Lépine, J. C. & Wang, Y. X. (2006). Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North–Central Tibetan Plateau) from wide-angle reflection seismology. Tectonophysics, 412(3-4), 121-140.
Jizba, D. L. (1991). Mechanical and acoustical properties of sandstones and shales, PhD dissertation, Stanford Univ., 260 .
Julia, J., C. Ammon, R. Herrmann, and A. M. Correig. (2000). Joint inversion of receiver function and surface wave dispersion observations, Geophys. J. Int., 143(1), 99–112.
Kern, H. (1982). Elastic-wave velocity in crustal and mantle rocks at high pressure and temperature: the role of the high-low quartz transition and of dehydration reactions. Physics of the Earth and Planetary Interiors, 29(1), 12-23.
Kim, K. H., Chiu, J. M., Pujol, J., & Chen, K. C. (2006). Polarity reversal of active plate boundary and elevated oceanic upper mantle beneath the collision suture in central eastern Taiwan. Bulletin of the Seismological Society of America, 96(3), 796-806.
Kuo‐Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., & Brown, D. (2019). Aftershock sequence of the 2018 M w 6.4 Hualien earthquake in eastern Taiwan from a dense seismic array data set. Seismological Research Letters, 90(1), 60-67.
Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6).
Kuo‐Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. Y., & Huang, B. S. (2012). Seismic evidence for the α‐β quartz transition beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39(22).
Kuo-Chen, H., Wu, Y. M., Chang, C. H., Hu, J. C., & Chen, W. S. (2004). Relocation of Eastern Taiwan earthquakes and tectonic Implications. Terrestrial, Atmospheric and Oceanic Sciences, 15(4), 647-666.
Lee, J. C., Lin, Y. N. N., Tseng, K. H., Barbot, S., & Chang, C. P. (2018). Coseismic and Postseismic Deformation of the 2016 Meinong Earthquake, Southwestern Taiwan. AGU Fall Meeting Abstracts.
Lee, S. J., Huang, H. H., Shyu, J. B. H., Yeh, T. Y., & Lin, T. C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation. Journal of Asian Earth Sciences, 96, 374-385.
Lin, C. H., Yeh, Y. H., Yen, H. Y., Chen, K. C., Huang, B. S., Roecker, S. W., & Chiu, J. M. (1998). Three‐dimensional elastic wave velocity structure of the Hualien region of Taiwan: Evidence of active crustal exhumation. Tectonics, 17(1), 89-103.
Matsumoto, Y., Ishikawa, M., Terabayashi, M., & Arima, M. (2010). Simultaneous measurements of compressional wave and shear wave velocities, Poisson′s ratio, and Vp/Vs under deep crustal pressure and temperature conditions: Example of silicified pelitic schist from Ryoke Belt, Southwest Japan. Island Arc, 19(1), 30-39.
O′Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412-5426.
Rawlinson, N., & Sambridge, M. (2004). Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69(5), 1338-1350.
Rawlinson, N., Hauser, J., & Sambridge, M. (2008). Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Advances in Geophysics, 49, 203-273.
Reasenberg, P., & Oppenheimer, D. USGS (1985). FPFIT, FPPLOT, and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. US Geol. Surv. Open-File Rept, 85, 739.
Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7).
Thomas, M. Y., Avouac, J. P., Champenois, J., Lee, J. C., & Kuo, L. C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114-5139.
Trnkoczy, A. (1998). Understanding & setting sta/lta trigger algorithm parameters for the K2. Appl Note, 41, 16-20.
Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972-986.
Van Avendonk, H. J. A., Kuo‐Chen, H., McIntosh, K. D., Lavier, L. L., Okaya, D. A., Wu, F. T., Wang, C. Y., Lee, C. S. & Liu, C. S. (2014). Deep crustal structure of an arc‐continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea. Journal of Geophysical Research: Solid Earth, 119(11), 8397-8416.
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353-1368.
Wang, T.H., Liu, C.C., Liang, W. T. (2008). Antelope快速入門手冊, TECIP/TECDC@IES, 1-32.
Weaver, R. L. (2005). Information from seismic noise. Science, 307(5715), 1568-1569.
Wen, Y. Y. (2019). Source Characteristics of the Northern Longitudinal Valley, Taiwan Derived from Broadband Strong-Motion Simulation. Earthquakes and Multi-hazards Around the Pacific Rim, Vol. II (pp. 63-72). Birkhäuser, Cham.
Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth, 114(B7).
Wu, F. T., Rau, R. J., & Salzberg, D. (1997). Taiwan orogeny: thin-skinned or lithospheric collision?. Tectonophysics, 274(1-3), 191-220.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112(B8).
Yao, H., van Der Hilst, R. D., & De Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophysical Journal International, 166(2), 732-744.
Yen, J. Y., Lu, C. H., Chang, C. P., A. J. Hooper, Chang, Y. H., Liang, W. T., Chang, T. Y., Lin, M. S., & Chen K. S. (2011). Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small-baseline SAR interferometry. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 22(3), 2.
Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo‐Chen, H., Chang, C. P., Wang, C. C., Chuang R. Y., Kuo, Y. T., Chiu, C. Y., Chang Y. H., & Bovenga, F. (2019). Insights into seismogenic deformation during the 2018 Hualien, Taiwan, earthquake sequence from InSAR, GPS, and modeling. Seismological Research Letters, 90(1), 78-87.
Yen, T. P. (1963). The metamorphic belts within the Tananao Schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72-74.
Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Zhang, H., & Thurber, C. (2006). Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163(2-3), 373-403.
Zhang, H., & Thurber, C. H. (2003). Double-difference tomography: The method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America, 93(5), 1875-1889.
Zhang, H., Maceira, M., Roux, P., & Thurber, C. (2014). Joint inversion of body-wave arrival times and surface-wave dispersion for three-dimensional seismic structure around SAFOD. Pure and Applied Geophysics, 171(11), 3013-3022.
李睿綺 (2019),Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan。國立中央大學地球科學系碩士論文。
徐乙君 (2019),臺灣中央山脈東翼的活動構造。國立中央大學地球科學系博士論文。
徐鐵良 (1954),臺灣東部海岸山脈地形與近期上升運動。臺灣省地質調查所彙刊,(8), 9-58。
陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱 (2018),臺灣東部碰撞帶孕震構造。經濟部中央地質調查所特刊,(33),123-155。
陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄、劉彥 求、林燕慧、石同生、盧詩丁 (2008),從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,(20),165-191。
廖宏祥 (2006),米崙斷層淺層震測研究。國立中正大學地震研究所暨應用地球物理研究所碩士論文。
鄭璟郁 (2017),利用噪聲成像解析嘉義梅山斷層區域之三維淺層剪力波速度構造。國立中央大學地球科學學系碩士論文。
指導教授 郭陳澔 張午龍(Hao Kuo-Chen Wu-Lung Chang) 審核日期 2019-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明