博碩士論文 106622022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.237.67.179
姓名 廖若嵐(Jolan Liao)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 西元1999年Mw7.6台灣集集地震之斷層破裂模擬及參數分析
(Dynamic Modeling of the 1999 Mw7.6 Chi-Chi, Taiwan, Earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 西元1999年Mw7.6集集地震(UTC時間1999-09-20 17:47)在台灣造成許多房屋或建築毀損等嚴重災害,也讓1993年完成建置的強地動觀測網記錄到充足的近場強地動波形等資料,提供地震學者一個難得的機會來檢視地震源的破裂行為。近二十年來前人對集集地震運動學有深入的研究,但至今對於地震動力學上的問題仍缺乏充分的探討。本研究從動力學的觀點切入探討集集地震產生背後的物理機制,基於前人對集集地震的運動學分析及2004年台灣車籠埔斷層鑽井計畫取得斷層帶岩芯與現地應力資料作為地震動力學參數的參考限制,以有限元素法建立斷層動力學數值模型,設計一系列均質性及異質性動力學參數(空間非均勻分布模型dc^a、S及σn)之對比實驗,經不同的實驗假設以測試特定動力學參數影響斷層破裂的效應,透過模擬逐步解析震源破裂的力學行為,討論可能造成斷層滑移量非均勻分佈的力學因素,並分析動力學參數的變化對於斷層帶在物理意義上的暗示。目前最佳動力學異質性模型可模擬出相似於集集地震運動學逆推結果,斷層破裂的最大滑移量集中在斷層北段,最大滑移量約為13公尺,總地震矩約為M0=4.9*10^20(Nm),其採用異質性動力學參數的數值範圍,分別為參數dc=0.5~1.7(m),修正dc^a=1.9~7.0(m)之參數α=0.25, S=0.3~7.5,斷層面北段與南段之σn值隨深度變化的範圍分別是10~92(MPa)及3.6~32.3(MPa),斷層北段值大約是南段的3倍。研究分析集集地震之動力學參數的成果提供兩點建議,第一點,由評估參數之明顯數值差異,暗示目前使用之斷層動力學模擬尚未能考慮實際上大規模地震之斷層摩擦熱能或孔隙水壓變化所造成的動力學行為;第二點,以斷層北段與南段之初始值的差異控制整體斷層總滑移量的形態,顯示斷層的滑移量與初始值有密切關聯。對於此研究的未來展望,希望目前分析動力學參數的結果有助於解釋斷層帶的力學特性及其物理意義上的暗示,幫助後人了解地震源的行為,然後更延伸應用此技術在未來台灣地震危害潛勢分析之參考。
摘要(英) The September 20, 1999 (UTC) Mw7.6 Chi-Chi earthquake can be viewed as one of the most devastating and significant events in Taiwan. Although with severe impact, this event provided a remarkable set of data, especially the high-quality near-field strong motion acceleration records from the Taiwan Strong Motion Instrumentation Progam (TSMIP). These data provide us a unique opportunity to have comprehensive understanding on the rupture behavior of earthquake. For two decades, since the 1999 Chi-Chi earthquake, the modeling of earthquake kinematics had been well developed. But nowadays, some questions related to earthquake dynamics still remains unknown. In this study, our goal is to investigate the dynamics of rupture and slip time histories of this event with great help on comprehensive understanding of this earthquake. We construct a 3D dynamic rupture model by finite element method. Based on the constraints of the kinematic study by Ji et al. (2003) and the geophysical logging data from the Taiwan Chelunpu-fault Drilling Project (TCDP), we try to estimate the dynamic parameters (e.g., apparent slip-weakening distance, dc^a) and to determine the state of stress (e.g., initial normal stress, σn) on the fault. In order to understand the characteristics of the dynamic parameters, we designed a series of numerical experiments on homogeneous and heterogeneous model which assume that the fault ruptures with spatially uniform or non-uniform frictional behavior. After various models with different set of dynamic parameters, we find that the parameters for our optimal heterogeneous model are dc=0.5~1.7(m), dc^a=1.9~7.0(m) scaled down by α=0.25, S=0.3~7.5,σn-north=10~92(MPa) and σn-south=3.6~32.3(MPa). The optimal model can simulate a rupture similar to the kinematic study and the maximum slip (~13 m) occurs in the northern part of fault. The total seismic moment M0 is ~4.9*10^20(Nm). The results suggest that could be overestimated due to influence of other dynamic process related to heat or pore pressure for large earthquakes, and the different value of in the northern and southern part of fault might be a key to control the slip pattern.
關鍵字(中) ★ 1999年集集地震
★ 地震動力學
關鍵字(英) ★ 1999 Chi-Chi earthquake
★ earthquake dynamics
論文目次 摘 要 II
Abstract III
誌 謝 IV
目 錄 V
圖 目 錄 VIII
表 目 錄 X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 1
1-2-1研究區域之背景介紹 2
1-2-2集集地震之震源特性研究 2
1-2-3地震動力學參數的定義 10
1-2-4斷層動力學模擬相關研究 13
1-3 本文介紹 23
第二章 研究方法 24
2-1 地震動力學參數之評估 24
2-1-1資料內容與處理 25
2-1-2評估地震動力學參數 25
2-1-3現地應力 34
2-2 斷層破裂動力學模擬 37
2-2-1 數值模擬方法 37
2-2-2 斷層模型基本設定 39
2-2-3 斷層運動狀態的力學假設 39
2-2-4 數值模擬實驗的設計 43
第三章 研究結果 52
3-1 均質性模型之實驗結果 52
3-1-1 測試初始應力狀態 52
3-1-2 測試參數dc 53
3-1-3 斷層破裂相圖 (rupture phase diagram) 54
3-2 異質性模型之實驗結果 63
3-2-1 測試空間非均勻分布之dca模型 63
3-2-2 測試空間非均勻分布之S模型 63
3-2-3 測試空間非均勻分布之模型 64
3-2-4 綜合空間非均勻分布之dca/ S/ 模型 64
3-2-5 最佳異質性模型之速度場與位移場合成波形 80
第四章 討論 85
4-1 地震動力學與運動學模擬結果之比較 85
4-2 修正評估地震動力學參數之可能原因 88
4-2-1 假設斷層破裂過程之動態應力下衝的情境 88
4-2-2 假設斷層破裂過程之動態應力過衝的情境 90
第五章 結論與建議 97
參考文獻 98
附 錄 102
附錄A 假設斷層南北段值相同以討論dca模型之修正 102
附錄B 假設斷層南北段值不同以討論dca模型之修正 102
參考文獻 Andrews, D. J., 1976a. Rupture propagation with finite stress in antiplane strain. J. Geophys. Res., 81, 3575-3582.
Andrews, D. J., 1976b. Rupture velocity of plane strain shear cracks. J. Geophys. Res., 81, 5679-5687.
Andrews, D. J., 1985. Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bull. Seism. Soc. Am., 75, 1-21.
Andrews, D. J., 1999. Test of two methods for faulting in finite-difference calculations. Bull. Seism. Soc. Am., 89, 931-937.
Andrews, D. J., 2002. A fault constitutive relation accounting for thermal pressurization of pore fluid. J. Geophys. Res., 107, ESE-15.
Brodsky, E. E., & Kanamori, H., 2001. Elastohydrodynamic lubrication of faults. J. Geophys. Res., 106, 16357-16374.
Barall, M., 2009. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault. Geophys. J. Int., 178, 845-859.
Das, S., & Aki, K., 1977. A numerical study of two-dimensional spontaneous rupture propagation. Geophys. J. Int., 50, 643-668.
Day, S. M., 1982. Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bull. Seism. Soc. Am., 72, 1881-1902.
Guatteri, M., & Spudich, P., 1998. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture. Bull. Seism. Soc. Am., 88, 777-789.
Guatteri, M., & Spudich, P., 2000. What can strong-motion data tell us about slip-weakening fault-friction laws?. Bull. Seism. Soc. Am., 90, 98-116.
Hung, J. H., Ma, K. F., Wang, C. Y., Ito, H., Lin, W., & Yeh, E. C., 2009. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics, 466, 307-321.
Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J. P., Bhat, H., Cruz-Atienza, V., Dalguer, L., Day, S., Duan, B., Ely, G., Kaneko, Y., Kase, Y., Lapusta, N., Liu, Y., Ma, S., Oglesby, D., Olsen, K., Pitarka, A., Song, S. & Templeton, E., 2009. The SCEC/USGS dynamic earthquake rupture code verification exercise. Seism. Res. Lett., 80, 119-126.
Haimson, B., Lin, W., Oku, H., Hung, J. H., & Song, S. R., 2010. Integrating borehole-breakout dimensions, strength criteria, and leak-off test results, to constrain the state of stress across the Chelungpu Fault, Taiwan. Tectonophysics, 482, 65-72.
Ida, Y., 1972. Cohesive force across the tip of a longitudinal‐shear crack and Griffith′s specific surface energy. J. Geophys. Res., 77, 3796-3805.
Ide, S., & Takeo, M., 1997. Determination of constitutive relations of fault slip based on seismic wave analysis. J. Geophys. Res., 102, 27379-27391.
Iwata, T., H. Sekiguchi, and A. Pitarka, 2000. Source and site effects on strong ground motions in near-source area during the 1999 Chi-Chi, Taiwan, earthquake, Eos Trans. AGU, 81, Fall Meet. Suppl., Abstract S72B- 07.
Ji, C., Wald, D. J., & Helmberger, D. V., 2002. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bull. Seism. Soc. Am., 92, 1192-1207.
Ji, C., Wald, D. J., & Helmberger, D. V., 2002. Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history. Bull. Seism. Soc. Am., 92, 1208-1226.
Ji, C., Helmberger, D. V., Wald, D. J., & Ma, K. F., 2003. Slip history and dynamic implications of the 1999 Chi‐Chi, Taiwan, earthquake. J. Geophys. Res., 108, ESE-5.
Kanamori, H., & Heaton, T. H., 2000. Microscopic and macroscopic physics of earthquakes. Geophys. Monograph-American Geophys. Uni., 120, 147-164.
Kanamori, H., & Brodsky, E. E., 2001. The physics of earthquakes. Physics Today, 54, 34-40.
Kuo, L. W., Song, Y. F., Yang, C. M., Song, S. R., Wang, C. C., Dong, J. J., Suppe John & Shimamoto, T., 2015. Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications. Tectonophysics, 664, 98-108.
Lay, T., & Wallace, T. C., 1995. Modern global seismology (Vol. 58). Elsevier.
Liu, K. S., Shin, T. C., & Tsai, Y. B., 1999. A free-field strong motion network in Taiwan: TSMIP. Terr. Atmos. Ocean. Sci., 10, 377-396.
Lee, S. J., Ma, K. F., & Chen, H. W., 2006. Three‐dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi‐Chi, Taiwan, earthquake. J. Geophys. Res., 111, B11308.

Mallat, S., 1998. A Wavelet Tour of Signal Processing, Academic Press, San Diego.
Mai, P. M., & Beroza, G. C., 2000. Source scaling properties from finite-fault-rupture models. Bull. Seism. Soc. Am., 90, 604-615.
Mikumo, T., Olsen, K. B., Fukuyama, E., & Yagi, Y., 2003. Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults. Bull. Seism. Soc. Am., 93, 264-282.
Ma, K. F., Wang, J. H., & Zhao, D., 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. Journal of Physics of the Earth, 44, 85-105.
Ma, K. F., Mori, J., Lee, S. J., & Yu, S. B., 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1069-1087.
Ma, K. F., Brodsky, E. E., Mori, J., Ji, C., Song, T. R. A., & Kanamori, H., 2003. Evidence for fault lubrication during the 1999 Chi‐Chi, Taiwan, earthquake (Mw7.6). Geophys. Res. Lett., 30.
Ma, K. F., Tanaka, H., Song, S. R., Wang, C. Y., Hung, J. H., Tsai, Y. B., Mori, J., Song, Y. F., Yeh, E. C., Sone, H., Kuo, L. W. & Wu, H. Y., 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444, 473-476.
Newmark, N., 1959. A method of computation for structural dynamics, J. Eng. Mech. Div., Am. Soc. Civil Eng., 85, 67-94.
Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B., 1998. Earthquakes on dipping faults: the effects of broken symmetry. Science, 280, 1055-1059.
Oglesby, D. D., & Day, S. M., 2001a. The effect of fault geometry on the 1999 Chi‐Chi (Taiwan) earthquake. Geophys. Res. Lett., 28, 1831-1834.
Oglesby, D. D., & Day, S. M., 2001b. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake. Bull. Seism. Soc. Am., 91, 1099-1111.
Suppe, J. & Wittke, J. H., 1977. Abnormal pore-fluid pressures in relation to stratigraphy and structure in the active fold-and-thrust belt of northwestern Taiwan. Petroleum Geology of Taiwan, 14, 11-24.
Scholz, C. H., 1988. The critical slip distance for seismic faulting. Nature, 336, 761-763.


Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Smith, N. & Kowada, A., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Lett., 70, 59-80.
Tinti, E., Spudich, P., & Cocco, M., 2005. Earthquake fracture energy inferred from kinematic rupture models on extended faults. J. Geophys. Res, 110.
Tanaka, H., Chen, W. M., Wang, C. Y., Ma, K. F., Urata, N., Mori, J., & Ando, M., 2006. Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett., 33.
Wibberley, C. A., & Shimamoto, T., 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436, 689.
Wei, S., Chen, M., Wang, X., Graves, R., Lindsey, E., Wang, T., Karakas, C. & Helmberger, D., 2018. The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking. Tectonophysics, 722, 447-461.
Weng, H., & Yang, H., 2018. Constraining Frictional Properties on Fault by Dynamic Rupture Simulations and Near‐Field Observations. J. Geophys. Res., 123, 6658-6670.
Xu, J., Zhang, H., & Chen, X., 2015. Rupture phase diagrams for a planar fault in 3-D full-space and half-space. Geophys. J. Int., 202, 2194-2206.
Zhang, W., Iwata, T., Irikura, K., Sekiguchi, H., & Bouchon, M., 2003. Heterogeneous distribution of the dynamic source parameters of the 1999 Chi‐Chi, Taiwan, earthquake. J. Geophys. Res., 108, ESE-4.
李憲忠,2003,九二一集集地震三維震源過程與震波傳遞分析,國立中央大學地球科學學系,博士論文。
王錦華等,2005,九二一集集大地震,初版,行政院國家科學委員會「地震及活動斷層研究」跨部會重大科技計畫辦公室。
吳泓昱,2010,車籠埔斷層於台灣大坑井區域之物理參數特性及應力場異質性之模擬,國立中央大學地球科學學系,博士論文。
陳麒任、吳元傑,2018,核研所動態地震模擬技術驗證報告,核能研究所化工組。
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2019-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明