博碩士論文 106622023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.191.21.86
姓名 成信儒(Hsin-Ju Cheng)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 地面-井下地電阻影像法之空間解析度與成像能力分析
(An Analysis of the Spatial Resolution and Resolving Ability of the Surface-Borehole Electrical Resistivity Methods)
相關論文
★ 宜蘭三星清水地區現地應力與斷層再活動分析★ 運用地電阻影像法估算非受壓含水層之水頭及比出水率: 位於台灣中部,台中-南投地盆地沿烏溪河之研究案例
★ 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率★ 運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率
★ 辨識大地地磁法現地施測之噪訊:以台灣花蓮地區為案例★ 運用大地電磁法探討北部屏東平原地下構造
★ 應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率★ 地電阻剖面影像法之不確定性評估
★ 時間域電磁波方法在雲林地區濁水溪沖積扇中下游水文地質結構測勘之應用★ 運用機器學習進行地球物理數據分析:地電阻與透地雷達方法中的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地球物理探勘藉由非破壞性的方法調查地下介質之物理特性,藉此推測出地底下物質成分、組成,廣泛應用在地質調查、工程調查等領域。其中地電阻方法可以量測地下電性構造,已經廣泛運用在近地表地質調查、水文地質與地下水探查、隧道工程、以及地下管線調查等工作。結合地表及垂直鑽孔電極的佈設,可以進行地電阻斷面掃描,對地表電極與井孔內電極所涵蓋的空間進行掃描量測,再經由反演算推求出地層電阻率之空間分布,以繪製地層電性構造剖面。本研究曾在池上大坡國小地區進行地面-井下跨孔式地電阻量測,使用任意可量測之四極組成之陣列(Hybrid array)方法,於地表佈設20個電極並且連接大坡井2和大坡井6的井孔電極,在量測資料3129筆中去除雜訊後的運算資料點數2300筆,然而反演結果僅對地表淺部低阻構造有較佳的解析度,井孔周圍的資料受井孔影響品質較差,井孔間深部的資料也因缺少解析度而成像品質差。為了瞭解地電阻影像法的空間解析度與成像能力,特別是井下與地面的聯合施測時,需要在測線佈設前,加以量化評估電極陣列配合的方式,並調整電極佈設與施測的設定,方能有效避免產生人為的假象。本研究引用震測斷層層析方法所運用的棋盤模擬正反演方法,藉由AGI開發之地電阻影像處理軟體 EarthImager 2D進行地電阻斷層掃描正演模擬,以評估反演影像之空間解析度與成像結果。模擬電極陣列選用雙極排列法(Pole-Pole array)和雙偶極排列法(Dipole-Dipole array)發現利用不同陣列取得模擬成像結果上之差異,如:異常體最小解析能力、井孔間距與井深的解析能力關係,以及針對特定構造會產生的反演假象等,未來在進行跨孔式地電阻法施測以及資料處理,均應事先加以考量以避免收取並排除資料假象,以避免做出錯誤的解釋。
摘要(英) The non-destructive geophysical investigation methods are widely used in geological surveys, engineering surveys or the composition of the subsurface materials. Especially, because of the high sensitivity of electrical structure, the electrical resistivity tomography method (ERT) has been widely used in near-surface geological surveys, such as hydrogeology groundwater exploration, tunnel engineering, and underground pipelines surveys. Also, combining the surface-borehole electrical resistivity tomography, we will gain more detail of subsurface information from the measured resistivity data. We operated the cross-borehole ERT measurement with the electrode configuration “Hybrid array” at Dapo elementary school locates at Taiwan, Taitung, Chihshang. With 20 electrodes at the surface and the subsurface electrodes of Dapo#2 and Dapo#6. The total data is 3129 and leaves 2300 data after removing the noisy data. Although we get better information at shallow subsurface after the data processing, the information of deeper subsurface is still hard to identify. In order to understand the spatial resolution and resolving ability of ERT method, especially cross-borehole ERT measurement, we should quantify the electrode array and survey parameters before we go field working. So we could efficiently avoid producing the artificial image. This research follows the checkerboard analysis to evaluate the accuracy of inversion results. The forward modeling method and inversion are operated by the ERT software, EarthImager 2D. We choose the electrode configurations Pole-Pole array and Dipole –Dipole array to analyze the spatial resolution and inversion results of surface-borehole ERT. The controlling measure parameter includes electrode spacing, number of wells, the distance of two wells, the grid size of checkerboard, and the structure types.
關鍵字(中) ★ 地球物理探勘
★ 地電阻影像法
★ 正演模擬
★ 反演
★ 棋盤模擬
關鍵字(英) ★ Geophysical exploration
★ ERT method
★ Forward model
★ Inversion
★ Checkerboard modeling
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 I
圖目錄 IV
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.2.1前人研究區域概述 2
1.2.2研究目的 3
1.3 文獻回顧 5
第二章 研究方法 8
2.1 地電阻方法 8
2.1.1基本原理 8
2.1.2地電阻影像法 8
2.1.3電極排列法 11
2.2 正演模擬法 16
2.3 反演算 18
第三章 研究結果 24
3.1 電阻率網格大小最佳性分析 24
3.2 電極間距分析 29
3.3 井孔數目和井孔間距分析 35
3.4 對構造的反應分析 43
3.5 大坡地區跨孔式地電阻施測結果與陣列模擬分析 48
3.5.1大坡現地井下地電阻調查 48
3.5.2大坡地區電極排列之正反演模擬結果 51
第四章 討論 55
4.1 二維地電阻施測參數正反演模擬討論 55
4.1.1 電阻率網格大小最佳性分析模擬結果討論 55
4.1.2 電極間距模擬結果討論 55
4.1.3 井孔數目與井孔間距模擬結果討論 56
4.1.4 垂直構造模擬結果討論 57
4.2 大坡地區使用之電極排列法模擬分析 58
4.2.1 Hybrid array於大坡地區電極佈設之棋盤模擬結果討論 58
4.2.2 各陣列對垂直構造模擬結果討論 58
第五章 結論 59
參考文獻 61
參考文獻 Advanced Geosciences, I. (2004). Instruction Manual for EarthImager 2D, Version 2.1. 7, Resistivity and IP Inversion Software.
Advanced Geosciences, I. (2009). Instruction Manual for EarthImager 2D, Version 2.4. 0, Resistivity and IP Inversion Software.
AL-Hammedawi, M. M. (2019). Forward and Inversion in Resistivity Method. 16.
Angelier, J., Chu, H.-T., Lee, J.-C., & Hu, J.-C. (2000). Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. Journal of Geodynamics, 29(3-5), 151-185.
Barker, R. (1979). Signal contribution sections and their use in resistivity studies. Geophysical Journal International, 59(1), 123-129.
Barker, R. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54(8), 1031-1037.
Beasley, C. W., & Ward, S. H. (1988). Cross-borehole resistivity inversion SEG Technical Program Expanded Abstracts 1988 (pp. 198-200): Society of Exploration Geophysicists.
Bing, Z., & Greenhalgh, S. (2000). Cross‐hole resistivity tomography using different electrode configurations. Geophysical prospecting, 48(5), 887-912.
Bing, Z., & Greenhalgh, S. A. (1997). A synthetic study on crosshole resistivity imaging using different electrode arrays. Exploration Geophysics, 28(1-2), 1-5.
Bing, Z., & Greenhalgh, S. A. (1998). Composite boundary-valued solution of the 2.5-D Green’s function for arbitrary acoustic media. Geophysics, 63(5), 1813-1823.
Bing, Z., & Greenhalgh, S. A. (1999). Explicit expressions and numerical calculations for the Fréchet and second derivatives in 2.5 D Helmholtz equation inversion. Geophysical prospecting, 47(4), 443-468.
Binley, A., Cassiani, G., Middleton, R., & Winship, P. (2002). Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. Journal of Hydrology, 267(3-4), 147-159.
Bott, M. (1967). Solution of the linear inverse problem in magnetic interpretation with application to oceanic magnetic anomalies. Geophysical Journal International, 13(1-3), 313-323.
Carey, A. M., Paige, G. B., Carr, B. J., & Dogan, M. (2017). Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations. Journal of Applied Geophysics, 145, 39-49.
Chang, P.-Y., Chen, C.-c., Chang, S.-K., Wang, T.-B., Wang, C.-Y., & Hsu, S.-K. (2012). An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophysical Journal International, 188(3), 1012-1024.
Chang, P.-Y., Huang, W.-J., Chen, C.-C., Hsu, H.-l., Yen, I.-C., Ho, G.-R., et al. (2018). Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan. Journal of Applied Geophysics, 153, 127-135.
Chen, W.-S., Yen, I.-C., Fengler, K. P., Rubin, C. M., Yang, C.-C., Yang, H.-C., et al. (2007). Late Holocene paleoearthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan. Earth and Planetary Science Letters, 264(3-4), 420-437.
Cheng, L.-W., Lee, J.-C., Hu, J.-C., & Chen, H.-Y. (2009). Coseismic and postseismic slip distribution of the 2003 Mw= 6.5 Chengkung earthquake in eastern Taiwan: Elastic modeling from inversion of GPS data. Tectonophysics, 466(3-4), 335-343.
Dahlin, T., & Loke, M. H. (1998). Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. Journal of Applied Geophysics, 38(4), 237-249.
Dahlin, T., & Zhou, B. (2001). A numerical comparison of 2D resistivity imaging with eight electrode arrays. Paper presented at the Proceedings of the 7th Meeting, Environmental and Engineering Geophysics.
Daily, W., & Owen, E. (1991). Cross-borehole resistivity tomography. Geophysics, 56(8), 1228-1235.
Daily, W., & Yorkey, T. J. (1988). Evaluation of cross-borehole resistivity tomography SEG Technical Program Expanded Abstracts 1988 (pp. 201-203): Society of Exploration Geophysicists.
Dey, A., & Morrison, H. F. (1979). Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44(4), 753-780.
Evjen, H. M. (1938). Depth factors and resolving power of electrical measurements. Geophysics, 3(2), 78-95.
Farquharson, C. G., & Oldenburg, D. W. (1998). Non-linear inversion using general measures of data misfit and model structure. Geophysical Journal International, 134(1), 213-227. doi:10.1046/j.1365-246x.1998.00555.x
Fikos, I., Vargemezis, G., Zlotnicki, J., Puertollano, J., Alanis, P., Pigtain, R., et al. (2012). Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bulletin of Volcanology, 74(8), 1821-1831.
Friedel, S. (2003). Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophysical Journal International, 153(2), 305-316. doi:10.1046/j.1365-246X.2003.01890.x
Griffiths, D., & Barker, R. (1993). Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics, 29(3-4), 211-226.
Hermans, T., Vandenbohede, A., Lebbe, L., & Nguyen, F. (2012). A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. Geophysics, 77(1), B11-B21.
Jupp, D., & Vozoff, K. (1975). Stable iterative methods for the inversion of geophysical data. Geophysical Journal International, 42(3), 957-976.
Kumar, D., Thiagarajan, S., & Rai, S. (2011). Deciphering geothermal resources in Deccan Trap region using electrical resistivity tomography technique. Journal of the Geological Society of India, 78(6), 541-548.
Lankston, R. W. (1989). The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics, 54(12), 1535-1542.
Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., & Jeng, F.-S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219-240.
Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., & Jeng, F.-S. (2005). Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creepmeter study at Chihshang, Taiwan. Comptes Rendus Geoscience, 337(13), 1200-1207.
Lee, J.-C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth, 108(B11).
Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S. M., et al. (2013). Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research, 49(12), 7992-8004.
Loke, M. (1994). The inversion of two-dimensional apparent resistivity data. unpubl. Ph. D. thesis, Un. of Birmingham (UK).
Loke, M., & Barker, R. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60(6), 1682-1690.
Loke, M. H., & Barker, R. (1996). Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method 1. Geophysical prospecting, 44(1), 131-152.
Looms, M. C., Jensen, K. H., Binley, A., & Nielsen, L. (2008). Monitoring unsaturated flow and transport using cross-borehole geophysical methods. Vadose zone journal, 7(1), 227-237.
M.H.Loke. (2004). Tutorial : 2-D and 3-D electrical imaging surveys.
Martínez-Pagán, P., Cano, Á. F., da Silva, G. R. R., & Olivares, A. B. (2010). 2-D Electrical Resistivity Imaging to Assess Slurry Pond Subsoil Pollution in the Southeastern Region of Murcia, SpainElectrical Resistivity Imaging and Slurry Ponds. Journal of Environmental and Engineering Geophysics, 15(1), 29-47.
McGILLIVRAY, P. R., & Oldenburg, D. (1990). Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: a comparative study. Geophysical prospecting, 38(5), 499-524.
Menke, W. (2018). Geophysical data analysis: Discrete inverse theory: Academic press.
Metwaly, M., & AlFouzan, F. (2013). Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia. Geoscience Frontiers, 4(4), 469-476.
Metwaly, M., Khalil, M. A., Al-Sayed, E.-S., & El-Kenawy, A. (2013). Tracing subsurface oil pollution leakage using 2D electrical resistivity tomography. Arabian Journal of Geosciences, 6(9), 3527-3533.
Mu, C.-H., Angelier, J., Lee, J.-C., Chu, H.-T., & Dong, J.-J. (2011). Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan). Journal of Structural Geology, 33(4), 743-755.
Ni, S., Ding, X., Helmberger, D. V., & Gurnis, M. (1999). Low-velocity structure beneath Africa from forward modeling. Earth and Planetary Science Letters, 170(4), 497-507.
Nishizawa, A., Kaneda, K., Katagiri, Y., & Kasahara, J. (2007). Variation in crustal structure along the Kyushu-Palau Ridge at 15–21 N on the Philippine Sea plate based on seismic refraction profiles. Earth, planets and space, 59(6), e17-e20.
Rawlinson, N., & Urvoy, M. (2006). Simultaneous inversion of active and passive source datasets for 3‐D seismic structure with application to Tasmania. Geophysical Research Letters, 33(24).
Rotstein, Y., Combs, J., & Biehler, S. (1976). Gravity investigation in the southeastern Mojave Desert, California. Geological Society of America Bulletin, 87(7), 981-993.
Sasaki, Y. (1992). RESOLUTION OF RESISTIVITY TOMOGRAPHY INFERRED FROM NUMERICAL SIMULATION 1. Geophysical prospecting, 40(4), 453-463.
Silvester, P. P., & Ferrari, R. L. (1996). Finite elements for electrical engineers: Cambridge university press.
Sirhan, A., & Hamidi, M. (2013). Detection of soil and groundwater domestic pollution by the electrical resistivity method in the West Bank, Palestine. Near surface geophysics, 11(4), 371-380.
Slater, L., Binley, A., Daily, W., & Johnson, R. (2000). Cross-hole electrical imaging of a controlled saline tracer injection. Journal of Applied Geophysics, 44(2-3), 85-102.
Springman, S. M., Thielen, A., Kienzler, P., & Friedel, S. (2013). A long-term field study for the investigation of rainfall-induced landslides. Geotechnique, 63(14), 1177.
Tang, J. T., Zhang, J. F., Feng, B., Lin, J. Y., & Liu, C. S. (2007). Determination of Borders for Resistive Oil and Gas Reservoirs by Deviation Rate Using the Hole‐to‐surface Resistivity Method. Chinese Journal of Geophysics, 50(3), 790-795.
Wang, T.-P., Chen, C.-C., Tong, L.-T., Chang, P.-Y., Chen, Y.-C., Dong, T.-H., et al. (2015). Applying FDEM, ERT and GPR at a site with soil contamination: a case study. Journal of Applied Geophysics, 121, 21-30.
Ward, S. H., & Hohmann, G. W. (1988). Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysics: Voume 1, Theory (pp. 130-311): Society of Exploration Geophysicists.
Wilkinson, P. B., Chambers, J. E., Lelliott, M., Wealthall, G. P., & Ogilvy, R. D. (2008). Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors. Geophysical Journal International, 173(1), 49-62. doi:10.1111/j.1365-246X.2008.03725.x
Yi, M.-J., Kim, J.-H., & Son, J.-S. (2011). Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area. Exploration Geophysics, 42(1), 7-17.
Yu, S.-B., & Kuo, L.-C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217.
Zhang, G., Zhang, G.-B., Chen, C.-C., & Jia, Z.-Y. (2015). Research on Inversion Resolution for ERT Data and Applications for Mineral Exploration. Terrestrial, Atmospheric & Oceanic Sciences, 26(5).
Zhou, B., & Dahlin, T. (2003). Properties and effects of measurement errors on 2D resistivity imaging surveying. Near surface geophysics, 1(3), 105-117.
王子賓. (2016). 交互應用各式地球物理探勘方法於土壤及地下水污染場址之研究. (博士論文), 國立中央大學地球科學學系.
江凱勝. (2017). 運用地電阻方法探測台中盆地主要水文地質架構. (碩士論文), National Central University.
吳秉昀. (2017). 地電阻影像法於海岸生物礁調查之研究 -以桃園觀音區為例 (碩士論文), 國立中央大學地球科學學系.
姚馨如. (2018). 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率. (碩士論文), National Central University.
姜彥麟, 朱傚祖, 李建成, & 黃志遠. (2012). 臺灣東部池上斷層全段之地表破裂與變形帶調查及構造特性分析. 經濟部中央地質調查所特刊, 第廿六號.
張竝瑜, 陳文山, 黃文正, & 郭陳浩. (2015). 重要活動斷層構造特性調查二期─活動斷層近地表構造特性調查(1/4)(計畫編號104-5226904000-0701). Retrieved from 經濟部中央地質調查所:
張竝瑜, 陳文山, 黃文正, & 郭陳浩. (2016). 重要活動斷層構造特性調查二期─活動斷層近地表構造特性調查(2/4)(計畫編號105-5226904000-0501). Retrieved from 經濟部中央地質調查所:
張竝瑜, 陳文山, 黃文正, & 郭陳浩. (2017). 重要活動斷層構造特性調查二期─活動斷層近地表構造特性調查(3/4)(計畫編號:106-5226904000-02-01). Retrieved from 經濟部中央地質調查所:
張竝瑜, 陳文山, 黃文正, & 郭陳浩. (2018). 重要活動斷層構造特性調查二期─活動斷層近地表構造特性調查(4/4)(計畫編號:107-5226904000). Retrieved from 經濟部中央地質調查所:
梅興泰, 鄭富書, & 蔡道賜. (2006). 地電阻影像剖面對非均質地下實體模擬的修正與分析. 技術學刊 (Journal of Technology), 21(4), 14.
郭治平, 劉興昌, 楊乃叡, & 林東暉. (2015). 以跨孔式地電阻檢測高壓噴射改良樁之應用助(編號 : MOST 104-2622-E-159-005-CC3). Professional Geotechnical Engineers(14), 3.
陳文山, & 王源. (1996). 臺灣東部海岸山脈地質: 經濟部中央地貭調查所.
馮正一, 陳奕凱, & 鄭旭涵. (2010). 應用 ERT 法於崩塌地特性調查與水分變化之研究. Jour nal of Chinese Soil and Water Conservation, 41 ((1)), 12.
蔡道賜, 黃富郎, & 柯瑞祥. (2014). 跨孔式 地電阻法於深埋管探查之應用. 中國土木水利工程學會, 41(5), 4.
指導教授 張竝瑜(Ping-Yu Chang) 審核日期 2019-6-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明