博碩士論文 106622603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.135.202.224
姓名 嚴精明(Jordi Mahardika Puntu)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 運用地電阻影像法估算非受壓含水層之水頭及比出水率: 位於台灣中部,台中-南投地盆地沿烏溪河之研究案例
(Using Electrical Resistivity Imaging Method to Estimate the Water Table and the Specific Yield of the Unconfined Aquifer: A Case Study along the Wuxi River in the Taichung-Nantou Basin, Central Taiwan.)
相關論文
★ 宜蘭三星清水地區現地應力與斷層再活動分析★ 地面-井下地電阻影像法之空間解析度與成像能力分析
★ 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率★ 運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率
★ 辨識大地地磁法現地施測之噪訊:以台灣花蓮地區為案例★ 運用大地電磁法探討北部屏東平原地下構造
★ 應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率★ 地電阻剖面影像法之不確定性評估
★ 時間域電磁波方法在雲林地區濁水溪沖積扇中下游水文地質結構測勘之應用★ 運用機器學習進行地球物理數據分析:地電阻與透地雷達方法中的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台中 - 南投地區為地下水儲存良好的地區,同時也是台灣各縣市中具備良好的地下水補注地區之一,然而,在此地區用來觀測地下水量的觀測井數量卻很有限,為了為研究區域提供充足的量測資料,我們採用了地電阻影像法(ERI)來進行地下水位高程的時序監測,並估算該地區的水文參數。本研究於2018年在研究區域內進行五次的地電阻時序施测,每次至少佈設11條测線,並採用Wenner及Schlumberger 陣列法進行施测。根據 Archie’s Law,首先由地電阻影像法所得到的結果估算地區的相對飽水度,接著計算 VG 水文參數,藉由土壤水特性曲線(SWCC)來驗證水頭高度,最後根據VG水文模型來估算比出水率(Sy)的理論值。研究結果顯示,區域的地下水位高程的變化介於22.85公尺及51.44公尺間,另外,二月份及其他施测月份的地下水位高程差值範圍介於1.64公尺至6.52公尺,最高的地下水位高程值出現在七月份(溼季),而最低地下水位高程值則在二月份(乾季),此外,研究結果顯示該區域的比出水率(Sy)約介於0.20至0.26,並在测線WS02量測到最低的比出水率(Sy)。
摘要(英) The Taichung-Nantou Region is the area with savings of the groundwater, and also with good recharge sources among the groundwater provinces in Taiwan. However, there are only limited observation wells for monitoring the groundwater quantity and quality in the region. In order to provide supplementary measurements for the area, we conducted Electrical Resistivity Imaging (ERI) surveys for time-lapse monitoring of the groundwater level, and also attempt to estimate the hydrogeological parameter. We deployed eleven ERI survey lines with both Wenner and Schlumberger array configurations and conducted the time-lapse measurements 5 times during the year of 2018. Based on the Archie’s Law, we first estimate the relative saturation with the ERI results, then calculate the VG parameters for identifying the water table using the Soil Water Characteristic Curve (SWCC). Lastly, we estimate the theoretical specific yield (Sy) based on the VG model. Our results show that the groundwater level varies between 22.85-m to 51.44-m in the area. In addition, the difference of groundwater level against that measured ones in February is ranging from 1.64-m to 6.52-m. The highest groundwater level took place in July (the wet season) and the lowest groundwater level appears to be in February (the dry season). Moreover, we found that the Sy values are about 0.20-0.26 in the study area, and the lowest Sy value is in the WS02 line.
關鍵字(中) ★ 地電阻影像法(ERI)
★ VG model
★ 水頭
★ 比出水率
★ 烏溪河
★ 台中-南投盆地
關鍵字(英) ★ Electrical Resistivity Imaging
★ VG model
★ water table
★ specific yield
★ Wuxi River
★ Taichung-Nantou Basin
論文目次 TABLE OF CONTENTS

ABSTRACT i
摘要 ii
TABLE OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES viii
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 4
CHAPTER II DESCRIPTION OF THE AREA 7
2.1 Research Area 7
2.2 Geological Setting 7
2.2.1 Geological Formation 7
2.2.2 Borehole Data 10
2.3 Environmental Condition 13
2.3.1 Geomorphology 13
2.3.2 Climate 15
2.3.3 Wuxi River 20
CHAPTER III METHODOLOGY 23
3.1 Resistivity Method 23
3.1.1 Surface Resistivity Method 23
3.1.2 Wenner Array 24
3.1.3 Schlumberger Array 25
3.2 Survey Design 26
3.2.1 Equipment 26
3.2.2 ERI Site 27
3.2.3 Measurement Time 28
3.3 Processing Data 29
3.3.1 Inversion 29
3.3.2 Picking 1D data from the 2D Tomogram 35
3.3.3 Estimating the VG parameters from the resistivity data by Archie’s Law 35
3.3.4 VG Model for Soil-Water Characteristic Curve (SWCC) 40
3.4 Workflow 48
CHAPTER IV RESULTS AND DISCUSSION 50
4.1 Overview of the research results 50
4.2 Electrical Resistivity Imaging (ERI) and Soil Water Characteristic Curve (SWCC) Results 51
4.3 Groundwater level of the research area 82
4.4 Specific yield of the research area 98
CHAPTER V CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 104
5.1 Conclusions 104
5.2 Limitations 105
5.3 Future work 107
REFERENCES 109
APPENDIX 1 121
A1. Relative Saturation (Sr) and SWCC curve. 121
APPENDIX 2 143
A.2 Van Genuchten Parameters of all the ERI site 143
APPENDIX 3 145
A.3 Difference Groundwater Level Contour Map against dry season (February) 145
A.4 Difference Groundwater Level Contour Map against Previous Measurement 147
參考文獻 Abeykoon, T., Udukumburge, R. S., Gallace, C., & Uchimura, T. (2017). Comparison of direct and indirect measured soil-water characteristic curves for a silty sand. International Journal of GEOMATE, 13(39), 09-16.
AGI. (2002). Instruction Manual for EarthImager 2D (2.4.0 ed.). Texas: Advanced Geosciences, Inc.
Ahmed, A., & Sulaiman, W. (2001). Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey. Environmental Management, 28(5), 655-663.
Al-Hameedawi, M. M. (2019). Forward and Inversion in Resistivity Method. Researchgate. doi:10.13140/RG.2.2.19335.24487
Alam, M. J. B. (2017). Evaluation of plant root the performance of evapotranspiration (ET) cover system. (Doctor), The University Of Texas at Arlington,
Alley, W. M., Hesly, R. W., LeBaugh, J. W., & Reilly, T. E. (2002). Flow and Storage in Groundwater Systems. Hydrology, 296, 1985-1990.
Amadi, A. A., & Osinubi, K. J. (2016). Soil-Water Characteristic Curves for Compacted Lateritic Soil Bentonite Mixtures Developed for Landfill Liner Applications. Geo-Chicago.
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics,. Trans. Am. Inst. Min. Metall. Pet. Eng., 146-154.
Atapour, H., & Mortazavi, A. (2018). The effect of grain size and cement content on index properties of weakly solidified artificial sandstones. Journal of Geophysics Engineering, 15, 613.
Barker, R. D., & Moore, J. (1998). The application of time-lapse electrical tomography in groundwater studies. Lead Edge, 17, 1454-1458.
Bayewu, O., Oloruntola, M., Mosuro, G., Laniyan, T., Ariyo, S., & Fatoba, J. (2018). Assessment of groundwater prospect and aquifer protective capacity using resistivity method in Olabisi Onabanjo University campus, Ago-Iwoye, Southwestern Nigeria. NRIAG Journal of Astronomy and Geophysics, 7(2018), 347-360.
Bear, J. (1972). Dynamic of Fluids in Porous Media. New York: Elsevier.
Bexfield, L. M., Thiros, S. A., Anning, D. W., Huntington, J. M., & McKinney, T. S. (2011). Effects of Natural and Human Factors on Groundwater Quality of Basin-Fill Aquifers in the Southwestern United States—Conceptual Models for Selected Contaminants Virginia: U.S. Geological Survey Scientific Investigations Report 2011-5020, 90 p.
Blott, S. J., & Pye, K. (2012). Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology, 59, 2071–2096.
Brooks, R., & Corey, A. (1964). Hydraulic Properties of Porous Media. Hydrology Paper 3.
Brutsaert, W. (1966). Probability laws for pore size distribution Soil Science, 101, 85-92.
Burdine, N. T. (1953). Relative Permeabilty Calculations from Pore-size Distribution Data. In M. Transaction of the American Institute of Mining, and Petroleum Engineers (Ed.), (Vol. 198, pp. 71-77).
Burger, H. R., Sheehan, A. F., & Jones, C. H. (2006). Introduction to Applied Geophysics (Exploring the Shallow Subsurface). London: W.W Norton & Company, Inc.
Carpenter, P. J., Ding, A., & Cheng, L. (2012). Identifying Groundwater Contamination Using Resistivity Surveys at a Landfill near Maoming, China. Nature Education Knowledge, 3(7), 20.
Central Geological Survey. (2015). Hydrogeological database-map. Drilling Enquiry. Retrieved from http://hydro.moeacgs.gov.tw/plain/
Chambers, J. E., Medrum, P. I., Wilkinson, P. B., Ward, W., Jackson, C., Matthews, B., . . . Gunn, D. (2015). Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193(2015), 412-420.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., . . . Unnikrishnan, A. S. (2013). Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press.
Crain, E. R. (1986, December 2018). The Log Analysis Handbook. Electrical Survey (ES Log). Retrieved from https://www.spec2000.net/07-eslog.htm
CWB. (2018, 25 November 2018). CODiS (CWB Observation Data Inquire System). CODiS. Retrieved from http://e-service.cwb.gov.tw
Daly, F. (1995). Elements of Statistics Mathematics and Computing : a second level course Pearson Education (illustrated, reprint ed.): Addison-Wesley.
de Franco, R., Biella, G., Tosi, L., Teatini, P., Lozej, A., Chiozzotto, B., . . . Gasparetto-Stori, G. (2009). Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). Journal of Applied Geophysics, 69(2009), 117-130.
deGroot-Hedlin, C., & Constable, S. (1990). Occam′s inversion to generate smooth, two dimensional models form magnetotelluric data. Geophysics, 55, 1613-1624.
Earle, S. (2006). Hydrogeology (Vol. Geol-304). Vancouver, Canada: malaspina University College
Ellis, R. G., & Oldenburg, D. W. (1994a). Applied geophysical inversion. Geophysical Journal International, 116, 5-11.
Environmental Protection Administration. (2017, 10 March 2017). Environmental water quality monitoring.
Executive Yuan. (2016). The Republik of China Yearbook (1st ed.). Taipei: Department of Information Service Executive Yuan.
Farzamian, M., Santos, F. A. M., & Khalil, M. (2015). Estimation of unsaturated hydraulic parameters in sandtone using electrical resistivity tomography under a water injection test. Journal of Applied Geophysics, 121, 71-83.
Fetter, C. W. (1980). Applied Hydrogeology. First Edition.
Fetter, C. W. (1994). Applied Hydrogeology. Third Edition.
Fredlund, D., & Xing, A. (1994). Equations for the Soil-Water Charcteristic Curve. Canadian Geotechnical Journal, 521-532.
Fredlund, D. G., & Rahardjo, H. (1993). SoilMechanics for Unsaturated Soils. New York, USA: John Wiley & Sons.
Gardner, P. M., & Heilweil, V. M. (2009). Evaluation of the Effects of Precipitation on Ground-Water Levels from Wells in Selected Alluvial Aquifers in Utah and Arizona, 1936–2005. Retrieved from Virginia: http:// pubs.er.usgs.gov/sir/2008/5242.
Gardner, W. (1956). Mathematics of isothermal water conduction in unsaturated soils. Highway Research Board Special Report 40 International Symposuim on Physico-Chemical Phenomenon in Soils, 78-87.
Genuchten, V. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sciences Society of America Journal, 44(5), 892-898.
Glover, P. W. J. (2010). A generalized Archie′s Law for n Phases. Geophysics, E247-E265.
Guarracino, L. (2007). Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter α Water Resources Research, 43(2007), W11502. doi:10.1029/2006WR005766
Hamzah, U., Jeeva, M., & Ali, N. A. M. (2014). Electrical Resistivity Techniques and Chemical Analysis in the Study of Leachate Migration at Sungai Sedu Landfill. Asian Journal of Applied Sciences, 7(7), 518-535.
Hassan, A. S. M., A H, Med. (2014). Electrical Resistivity Method for Water Content Characterisation of Unsaturated Clay Soil. (Doctor), Durham University, UK.
Hemond, H. F., & Fechner, E. J. (2015). Chemical Fate and Transport in the Environment (Third ed.). USA: Elsevier.
Ho, H.-C., & Chen, M.-M. (2000). Explanatory Text of the Geological Map of Taiwan Sclae 1:50.000 SHEET 24. In C. G. Survey (Ed.), (pp. 13-20). Taipei: Central Geological Survey.
Hong, W.-T., Jung, Y.-S., Kang, S., & Lee, J.-S. (2016). Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System. Journal of Materials(9), 01-15.
Inman, J. R. (1975). Resistivity inversion with ridge regression. Geophysics, 40, 798-817.
Jackson, P., William, J., Lovel, M., Camps, A., Rochelle, C., & Milowdowski, A. (2007). An Investigation of the Exponent in Archie′s Equation: Comparing Numerical Modeling with Laboratory Data: Towards CHaracterising Disturbed Samples from the Cascadia Margin:- IODP Expedition 311. SPWLA 48th Annual Logging Symposium, 1-11.
Jan, C. D., Chen, T. H., & Lo, W. C. (2006). Effect of rainfall intensity and distribution on groundwater level fluctuations. Journal of Hydrology, 348-360.
Johnson, A. I. (1967). Specific Yield-Compilation of Specific Yields for Various Materials (Third ed.). Washington: United States Government Printing Office.
Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology, 338, 237-250. doi:10.1016/j.jhydrol.2007.02.036
Koch, K. M. (2004). Application of electrical resistivity tomography (ERT) together with tracer data to identify hydrological process areas at a surface water / groundwater. (Doctor), Albert-Ludwigs Universität, Freiburg i. Br.,.
Koda, E., Tkaczyk, A., Lech, M., & Osinski, P. (2017). Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Applied Sciences, 7, 262-275. doi:doi:10.3390/app7030262
Kosugi, K. (1994a). Three-parameter lognormal distribution model for soil water retention. Water Resources Research, 30(4), 891-901.
Kosugi, K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties Water Resources Research, 32, 2697-2703.
Lerner, D. N., Issar, A. S., & Simmers, I. (1990). Groundwater Recharge. Paper presented at the International Association of Hydrogeologists, International Contributions to Hydrogeology.
Li, X., Li, G., & Zhang, Y. (2014). Identifying Major Factors Affecting Groundwater Change in the North China Plain with Grey Relational Analysis Water, 6, 1581-1600. doi:10.3390/w6061581
Liang, C. J., Liu, Y. S., Liu, G. Y., & Liang, J. J. (2016). Spatial and temporal analysis of ambient carbonyls in a densely populated basin area of central Taiwan. Sustainable Environment Research, 1-11.
Lin, C. C. (1935). Stratigraphical studies on the younger Tertiary and Pleistocene formations of the Toyohara district, Taityu prefecture. In (Vol. 13). Taiwan: Mem Fa. Sci and Agri Taihoku University.
Lines, L. R., & Treitel, S. (1984). Tutorial : A review of least-squares inversion and its application to geophysical problems. Geophysical Prospecting, 32, 159-186.
Lippmann, E. (2014). 4point Light 10W Earth Resistivity Meter. Schaufling: Erich Lippmann-Geophysical Instruments.
Loke, M. H. (1999). Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys. In. Retrieved from www.geometrics.com
Loke, M. H., & Barker, R. D. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60, 1682-1690.
Mahmood, K. R., & Abdulkarrem, A. H. (2018). Nature of Soil-Water Characteristics Curves (SWCC) for Soils from Anbar Governorate. Researchgate.
Matlan, S. J., Mukhlisin, M., & Taha, M. R. (2014). Performance Evaluation of Four-Parameter Models of the Soil-Water Characteristic Curve. The Scientific World Journal, 2014, 1-12. doi:http://dx.doi.org/10.1155/2014/569851
McCarter, W. J. (2014). The electrical Characteristic of compacted clays. Géotechnique, 263-267. doi:10.1680/geot.1984.34.2.263
McKee, C., & Bumb, A. (1987). The importance of unsaturated £ow parameters in designing a hazardous waste site. Hazardous Wastes and Environmental Emergencies. Paper presented at the Hazardous Materials Control Research Institute National Conference, Houston, Texas.
Meinzer, O. (1932). Outline of methods for estimating ground-water supplies. U.S. Geol. 1007 Survey Water Supply Paper., 638 C, 144.
Miller, S. J. (2009). The Method of Least Square. In (pp. 1-7). Rhode Island: Mathematic Department of Brown University.
mohamaden, M., & Elhab, D. (2017). Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt. NRIAG Journal of Astronomy and Geophysics, 6(2017), 201-209.
Mohamaden, M. I. I., Hamouda, A. Z., & Mansour, S. (2016). Application of electrical resistivity method for groundwater exploration at the Moghra area, Western Desert, Egypt. Egyptian Journal of Aquatic Research, 42(2016), 261-268.
Moreno, Z., Arnon-Zur, A., & Furman, A. (2015). Hydro-geophysical monitoring of orchard root zone dynamics in semi-arid region. Irrigation Sciences, 33, 303-318.
Morris, D. A., & Johnson, A. I. (1967). Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey. U.S. Geological Survey Water-Supply Paper, 1839-D, 42.
Mualem, Y. (1976a). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522.
Mualem, Y. (1976b). A catalouge if the hydraulic properties of unsaturated soils. In I. I. o. T. Research Project no. 442 (Ed.). Haifa, Israel.
Narayan, S., Dusseault, M. B., & Nobes, D. C. (1994). Inversion Techniques Applied to Resistivity Invers Problems. Inverse Problems, 10, 669-686.
National Statistics Taiwan. (2017). General Statistical Analysis Report. Retrieved from https://eng.stat.gov.tw/public/Data/7113143851PNHSNJPU.pdf
Navaratnam, C. U., Aberle, J., & Daxnerová, J. (2018). An Experimental Investigation on Porosity in Gravel Beds. In Free Surface Flows and Transport Processes. Cham, Germany: Springer International Publishing.
Navaratnam, C. U., Aberle, J. Q., Jie, & Henry, P.-Y. (2018). Influence of Gravel-Bed Porosity and Grain Orientation on Bulk Flow Resistance. Water, 10, 561. doi:10.3390/w10050561
Nazaruddin, D. A., Amiruzan, Z. S., Hussin, H., & Jafar, M. T. M. (2017). Integrated geological and multi-electrode resistivity surveys for groundwater investigation in Kampung Rahmat village and its vicinity, Jeli district, Kelantan, Malaysia. Journal of Applied Geophysics, 138(2017), 23-32.
Ogungbe, A. S., Onori, E. O., & Olaoye, M. A. (2012). Application of electrical resistivity techniques in the investigation of groundwater contamination: A case study of Ile – Epo Dumpsite, Lagos, Nigeria International Journal of Geomatics and Geosciences, 3(1), 30-41.
Park, S., Yi, M.-J., Kim, J.-H., & Shin, S. W. (2016). Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. Journal of Applied Geophysics, 135, 1-7.
Pierwola, J. (2013). Investigation of Soil Contamination Using Resistivity and Induced Polarization Methods. Polish Journal of Environmental Studies, 22(6), 1781-1788.
Reynold, J. (2011). An Introduction to Applied and Environmental Geophysics (2nd ed.). New York: Wiley blackwell- John Wiley and Sons Lid.
Robinson, D. A., Binley, A. M., Crook, N., Day-Lewis, F. D., Ferre, T. P. A., Grauch, V. J. S., . . . Slater, L. (2008). Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrology Process, 22, 3604-3635.
Sarker, L. (2018). Field SWCC modeling and soil water storage evaluation through geophyscial testing. (Master), THE UNIVERSITY OF TEXAS AT ARLINGTON, Arlington.
Seki, K. (2007). SWRC fit - a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrology Earth System Sciences, 4, 407-437. doi: doi:10.5194/hessd-4-407-2007
Sharma, S., & Verma, G. K. (2015). Inversion of Electrical Resistivity Data: A Review International Journal of Computer and Systems Engineering, 9(4), 400-446.
Sillers, W. S., Fredlund, D. G., & Zakerzadeh, N. (2001). Mathematical attributes of some soil-water characteristic curve models. Geotechnical and Geological Engineering, 19, 243-283.
Su, L.-J., Xu, X.-q., Geng, X.-y., & Liang, S.-q. (2017). An integrated geophysical approach for investigating hydro-geological characteristics of a debris landslide in the Wenchuan earthquake area. Engineering Geology, 219(2017), 52-63.
Taiwan Water Corporation. (2017, 30 April 2019). What is the classification of surface water bodies and water quality standards? Retrieved from https://www4.water.gov.tw/04_services/ser_F_con.asp?bull_id=6107
Tani, M. (1982). The Properties of water-table rise produced by a one dimensional, vertical, unsaturated flow (in japanese with an English summary). Journal of japan for Society, 64, 409-418.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (2001). Applied Geophysics Second Edition (2 ed.). Cambridge: Cambridge University Press.
Toews, M. W., Allen, D. M., & Whitfield, P. H. (2009). Recharge sensitivity to local and regional precipitation in semiarid midlatitude regions. Water Resources Research, 45(W06404), 1-10. doi:10.1029/2007WR006763
Uchegbulam, O., & Ayolabi, E. A. (2014). Application of Electrical Resistivity Imaging in Investigating Groundwater Pollution in Sapele Area, Nigeria. Journal of Water Resource and Protection, 6, 1369-1379.
Uhleman, S., Kuras, O., Richards, L. A., Naden, E., & Polya, D. A. (2017). Electrical resistivity tomography determines the spatial distribution of claylayer thickness and aquifer vulnerability, Kandal Province, Cambodia. Journal of Asian Earth Sciences, 147(2017), 402-414.
Uhleman, S., Sorensen, J. P. R., House, A. R., Wilkinson, P. B., Roberts, C., Gooddy, D. C., . . . Chambers, J. E. (2016). Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resources Research, 1607-1625.
Ulusoy, I., Dahlin, T., & Bergman, B. (2014). Time-lapse electrical resistivity tomography of a water infiltration test on Johannishus Esker, Sweden. Hyrdogeology Journal. doi:DOI 10.1007/s10040-014-1221-2
Umeh, V. O., Ezeh, C. C., & Okonkwo, A. C. (2014). Groundwater Exploration of Lokpaukwu, Abia State Southeastern Nigeria, Using Electrical Resistivity Method. International Research Journal of Geology and Mining, 4(3), 76-83.
Weisstein, E. (1999, 6 May 2019). Normal Distribution Function. Probability and Statistics Retrieved from http://mathworld.wolfram.com/NormalDistributionFunction.html
Wilkinson, P. B., Medrum, P. I., Kuras, O., Chambers, J. E., Holyoake, S. J., & Ogilvy, R. D. (2010). High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a onfined aquifer. Journal of Applied Geophysics, 70, 268-276.
WRPI. (2018, 10 December 2018). Groundwater Environment in Taiwan. Planning and Knowledge. Retrieved from https://www.wrap.gov.tw/EN/paper5.aspx
Wu, Y., Wang, Y. H., & Niu, Q. (2017). Integrating the Four-Probe Method and SWCC Device to Measure Electrical Resistivity Anisotropy of Unsaturated Soil. Geotechnical Testing Journal.
Yang, L., Qi, Y., Zheng, C., Andrews, C. B., Yue, S., Lin, S., . . . Li, H. (2018). A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge. Water, 10, 503-519. doi:10.3390/w10040503
Yang, X., & You, X. (2013). Estimating Parameters of Van Genuchten Model for Soil Water Retention Curve by Intelligent Algorithms. Applied Mathematics & Information Sciences, 1977-1983.
Yao, H., & Chang, P.-Y. (2018). The estimation of the water table and the specific yield with time-lapse 2D Electrical Resistivity Imaging in the Minzu Basin of Central Taiwan. (Master), National Central University, Taiwan.
Zarroca, m., Bach, J., Linares, R., & Pellicer, X. (2011). Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). Journal of Hydrology, 409(2011), 407-422.
Zawadzki, L., Wychowaniak, D., & Lech, M. (2018). Electrical resistivity methods for landfill monitoring. Land Reclamation, 50(2), 183-193.
Zeng, R. Q., Meng, X. M., Zhang, F. Y., Wang, S. Y., Cui, Z. J., Zhang, M. S., & Chen, G. (2016). Characterizing hydrological processes on loess slopes using electrical resistivity tomography – A case study of the Heifangtai Terrace, Northwest China. Journal of Hydrology, 541(2016), 742-753.
Zhang, D. (2016). A Coefficient of Determination for Generalized Linear Models. The American Statistician. doi:DOI: 10.1080/00031305.2016.1256839
指導教授 張竝瑜(Prof. Ping-Yu Chang) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明