以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:35 、訪客IP:18.97.14.88
姓名 雅斯帝(Tyas Dwi Aprilniadi) 查詢紙本館藏 畢業系所 地球科學學系 論文名稱
(Internal Structure and Permeability of the Creeping Chihshang Fault, Taiwan)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 斷層帶之滲透率與內部結構主要控制上部地殼的流體流動。斷層帶可作為阻水帶或導水帶,其滲透率支配流體穿過或沿著斷層遷移,且能與圍岩之滲透率有很大差距。在此,我們研究池上斷層之滲透率與內部結構,我們利用高圍壓孔隙滲透儀(YOKO2)對立吉混同層及礫石層進行滲透率與孔隙率之量測,實驗條件為室溫、均向圍壓、孔隙流體為氦氣。我們利用萬安二號井的岩心,考慮滲透率異向性,製成垂直和平行斷層面之圓柱試體,及垂直和平行地表之圓柱試體。結果顯示,於低圍壓下,利吉層之滲透率應力敏感度相當高,較礫石層之滲透率低;利吉層孔隙率則明顯低礫石層。此一結果能說明潛移行為的季節性變化。我們亦進行微構造觀察及分析,瞭解微裂隙(microcrack)如何影響滲透率。根據滲透率量測、微構造觀察結果,我們提出池上斷層之內部構造與滲透率構造。 摘要(英) Internal structure and permeability structure of fault zone primarily control on fluid flow in upper crust. It indicates faults as the conduct or barrier, dictates fluid flow along or across faults and can be largely different from those of surrounding country rocks. To consider the relation between internal structure and permeability structure in the Chihshang Fault, we performed permeability and porosity measurements on the Lichi Mélange and the Conglomerate. We measured permeability and porosity with an intra-vessel oil pressure apparatus (YOKO2) at room temperature at isotropic confining pressure, using helium as pore fluid. Cylindrical samples were made from retrieved rock cores in WAN-2 borehole sample which represents a borehole sample near the Chihshang fault. The samples were made in dip and normal direction of fault plane, and also in vertical and horizontal direction to investigate the permeability anisotropy. The results showed the Lichi Mélange is impermeable that may be responsible for seasonal fluctuation on creeping Chihshang fault. We conducted the microfratures analysis, used polarizing microscopy to investigate how microstructures influence the permeability of samples. Based on the microstructures, permeability anisotropy and the fault zone architecture we proposed the permeability structures of Chihshang fault to provide the summary of measured results. 關鍵字(中) ★ 匍匐池上斷層
★ Lichi Mélange
★ 滲透率各向異性關鍵字(英) ★ Creeping Chihshang Fault
★ LichiMélange
★ permeability anisotropy論文目次 TABLE OF CONTENTS
摘要 i
ABSTRACT. ii
ACKNOWLEDGMENTS. iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1
INTRODUCTION 1
1.1 The permeability in fault zone. 1
1.2 The Chihshang Fault in eastern Taiwan 3
1.3 The pressure-solution creep. 7
1.4 The framework 8
Chapter 2
SAMPLE PREPARATION AND METHODOLOGY. 10
2.1 Samples Preparation 10
2.2 Permeability and Porosity Measurements 19
2.3 Fracture description 22
2.4 Microstructural observations 22
Chapter 3
RESULTS 23
3.1 Permeability evolution with confining pressure in laboratory 23
3.2 Porosity evolution with confining pressure in laboratory 26
3.3 Qualitative Fractures Description 27
3.3.1 Fractures description of rock cores 28
3.3.2 Optical photomicrographs of samples from WAN-2 borehole (the fragment in vicinity of the experimental sample) 32
3.3.3 Optical photomicrographs from permeability samples after measurement 42
Chapter 4
DISCUSSION 62
4.1 Comparison between laboratory and injection experiments 62
4.2 Effect of stress on permeability in the Chihshang Fault. 63
4.3 The permeability anisotropy in the Chihshang Fault 66
4.4 The relationship between permeability and porosity 69
4.5 Permeability structure along WAN-2 and the correlation with the creeping mechanism 70
Chapter 5
CONCLUSIONS 73
REFERENCES. 74
LIST OF FIGURES
Fig. 1.1. The simplified fault model proposed by Caine et al. (1996) 2
Fig. 1.2. The tectonic setting of Taiwan 4
Fig. 1.3. Tectonic setting of Taiwan and geological region of Coastal Range 6
Fig. 1.4. The illustration of the fracturing and fragmentation process in the fault gouge after an earthquake 8
Fig. 1.5 Drilling boreholes and the rock core 9
Fig. 2.1. The sampling direction for the Lichi Mélange and the Conglomerate 10
Fig. 2.2. YOKO2 used in this study to measure permeability and porosity 19
Fig. 2.3. The illustration of permeability and porosity measurement systems 21
Fig. 3.1. Cycling confining pressure experiment in the Lichi Mélange 23
Fig. 3.2. Permeability data of the Lichi Mélange 24
Fig. 3.3. Permeability data of the Conglomerate 25
Fig. 3.4. Porosity data of the Lichi Mélange. 26
Fig. 3.5. Porosity data of the Conglomerate 27
Fig. 3.6. The sketch of rock cores at 13.4-30.0 m depth. 29
Fig. 3.7. The sketch of rock cores at 44.2-62.0 m depth. 30
Fig. 3.8. The sketch of rock cores at 45.0-47.0 m depth. 31
Fig. 3.9. The thin section of LPe01. 32
Fig. 3.10. The thin section of LPe02. 33
Fig. 3.11. The thin section of LPe04. 34
Fig. 3.12. The thin section of LPa04. 35
Fig. 3.13. The thin section of LPa05. 36
Fig. 3.14. The thin section of LPe05. 37
Fig. 3.15. The thin section of CV13. 38
Fig. 3.16. The thin section of CH13. 39
Fig. 3.17. The thin section of CV14. 40
Fig. 3.18. The thin section of CV15. 41
Fig. 3.19. The thin section of CH15. 42
Fig. 3.20. The thin section of KLPe01. 43
Fig. 3.21. The thin section of KLPe02. 44
Fig. 3.22. The thin section of KLPe04. 45
Fig. 3.23. The thin section of KLPa04. 46
Fig. 3.24. The thin section of KLPa05. 47
Fig. 3.25. The thin section of KLPe05. 48
Fig. 3.26. The thin section of KLV07. 49
Fig. 3.27. The thin section of KLH09. 50
Fig. 3.28. The thin section of KLPa10_1. 51
Fig. 3.29. The thin section of KLPe10 52
Fig. 3.30. The thin section of KLPa10_2 53
Fig. 3.31. The thin section of KLPa11 54
Fig. 3.32. The thin section of KCPe12 55
Fig. 3.33. The thin section of KCPa12 56
Fig. 3.34. The thin section of KCH13 57
Fig. 3.35. The thin section of KCV13. 58
Fig. 3.36. The thin section of KCV15. 59
Fig. 3.37. The thin section of KCH15. 60
Fig. 3.38. The thin section of KCV16. 61
Fig. 4.1. The elastic deformation in the cycling confining pressure experiment 64
Figure 4.2. The stress sensitivity comparison between permeability and porosity of the Lichi Mélange 65
Fig. 4.3. The comparison of the Lichi Mélange in parallel-fault and perpendicular-fault permeability 66
Fig. 4.4. The petrographic analysis which showed unclear foliation in parallel-fault direction 67
Fig. 4.5. The similarity of the microfractures in vertical and horizontal direction 67
Fig. 4.6. The Conglomerate sample in parallel-fault and perpendicular-fault 68
Fig. 4.7. The permeability and porosity relationship 69
Fig. 4.8. The comparison of the petrographic analysis between LPe02 and CH13 70
Fig. 4.9. The permeability structure along the WAN-2 71
參考文獻 Armitage, P. J., Faulkner, D. R., Worden, R. H., Aplin, A. C., Butcher, A. R., and Iliffe, J., 2011. Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria. Journal of Geophysics Research, v. 116, B12208, doi: 10.1029/2011JB008385.
Aydin, A., 1978. Small faults as deformation bands in sandstone. Pure and Applied Geophysics, v. 116, p. 913-93.
Caine, J. S., Evans, J. P., and Forster, C. B., 1996. Fault zone architecture and permeability structure. Geology, v. 24, p. 1025-1028.
Chang, C., Angelier, J., Huang, C., and Liu, C., 2001. Structural evolution and significance of a mélange in a collision belt: The Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine, v. 138, p. 633-651. doi: 10.1017/S0016756801005970.
Chen, W.-S. 2009. The fault slip long term velocity and recurrence period. Report of Central Geological Survey, p. 31-40.
Chester, F.M., and Logan, J.M., 1986. Implications for mechanical-properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics, v. 124 (1-2), p. 79-106.
David, C., Wong, T., Zhu, W., and Zhang, J., 1994. Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, v. 143, p. 425-456.
Evans, J. P., Forster, C. B., and Goddard, J. V., 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, v. 19, p. 1939-1404.
Faulkner, D. R., and Rutter, E. H., 1998. The gas permeability of clay-bearing fault gouge at 20°C. Geological Society of London, v. 147, p. 147-156. doi: 10.1144/GSL.SP.1998.147.01.10.
Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., and Withjack, M., 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structure Geology, v. 32, p. 1557-1575. doi: 10.1016/j.jsg.2010.06.009.
Gibson, R. G., 1994. Fault-zone seals in siliciclastic strata of the Columbus Basin, offshore Trinidad. AAPG Bulletin, v. 78, p. 372-1385.
Gratier, J-P., Guiguet, R., Renard, F., and Jenatton, L., 2009. A pressure solution creep law for quartz from indentation experiments. Journal of Geophysical Research, v. 114. doi: 10.1029/2008JB005652
Hao, K., Wu, Y.-M., Chen, Y.-G., and Chen, R.-Y., 2007. 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures. Journal of Asian Earth Sciences, v. 31, n. 3, p. 332-339. doi: 10.1016/j.jseaes.2006.07.028.
Huang, C.-Y., Chien, C.-W., Yoi, B., and Chang, C.-P. 2008. The Lichi Mélange: A collision mélange formation along early arc ward back thrusts during fore arc basin closure, Taiwan arc-continent collision. A. E. Draut, P. D. Clift, D. W. Scholl (eds.), Formation and Applications of the Sedimentary Record in Arc Collision Zones, The Geological Society of America, p. 127-154. doi: 10.1130/2008.2436(06).
Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., and Jeng, F.-S., 2003. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001. Journal of Geophysical Research, v. 108., n. B11, 2528. doi: 10.1029/2003JB002394.
Lee, J.-C., Chu, H.-T., Angelier, J., Hu, J.-C., and Chen, H.-Y., 2006. Quantitative analysis of surface coseismic faulting and post seismic creep accompanying the 2003, Mw = 6.5, Chengkung earthquake in eastern Taiwan. Journal of Geophysical Research, v. 111. doi:10.1029/2005JB003612.
Mizoguchi, K., Hirose, T., Shimamoto, T., and Fukuyama, E., 2008. Internal structure and permeability of the Nojima fault, southwest Japan. Journal of Structural Geology, v. 30 (4), p. 513-524.
Morrow, C. A., Lockner, D., Hickman, S., Rusanov, M., and Rockel. T., 1994. Effects of lithology and depth on the permeability of core samples from the Kola and KTB drillholes. Journal of Geophysics Research, v. 99, p. 7274-7623.
Morrow, C., Lockner, D., Moore, D., and Hickman, S, 2014. Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples. Journal of Structural Geology, v. 64, p. 99-114. doi: 10.1016/j.jsg.2013.09.009
Mu, C.-H., 2012. Shallow Geological Structure and hydromechanical behavior of an active reverse fault at convergent plate boundary: The Chihshang Fault, eastern Taiwan, PhD thesis, National Central University, Taiwan.
Mu, C.-H., Angelier, J., Lee, J.-C., Chu, H.-T., and Dong, J.-J., 2011. Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan). Journal of Structural Geology, v. 33, p. 743-755. doi: 10.1016/j.jsg.2011.01.015
Mu, C.-H., Lee, J.-C., Guglielmi, Y., 2014 Active fault zone as a barrier of hydraulic conduits in shallow aquifers: insights from on-site injection experiments at the Chihshang fault in eastern Taiwan. AGU Fall Meeting 2014. San Francisco, 17 December 2014.
Rice, J. R., 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault, in Fault Mechanics and Transport Properties of Rocks. International Geophysics Series, v. 51.
Scheidegger, A. E., 1974. The physics of flow through porous media, 3rd ed., University of Toronto Press, Toronto, Canada.
Sibson, R. H., 1973. Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature, v. 243, p. 66-68.
Walder, J., and Nur, A., 1984. Porosity reduction and crustal pore pressure development. Journal of Geophysical Research, v. 89. p. 11,539-11,548.
Wibberley, C. A., and Shimamoto, T., 2003. Internal structure and permeability of major strike-slip fault zones: The Median Tectonic Line in Mie Perfecture, Southwest Japan. Journal of Structural Geology, v. 25, p. 59-78.
Wu, W.-J., 2015. Stress-history dependent porosity and permeability in siliciclastic sedimentary rocks – from laboratory tests to in-situ applications, PhD thesis, National Central University, Taiwan.
Yu, S.-B., Chen, H.-Y., and Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, v. 274, p. 41-59.
Zhang, S., and Tullis, T., 1998. The effect of fault slip on permeability anisotropy in quartz gouge. Tectonophysics, v. 295 (1-2), p. 41-52. doi: 10.1016/S0040-1951(98)00114-0.
Zoback, M. D., and H.-P. Harjes, 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal of Geophysics Research, v.102, p. 477-492.指導教授 郭力維(Li-Wei Kuo) 審核日期 2019-7-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare