博碩士論文 106624010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.173.234.140
姓名 楊鈞凱(Chun-Kai Yang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 3D列印裂隙網絡試體於不同圍壓下裂隙力學與水力平均內寬之量測
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 天然氣儲存、二氧化碳封存和核廢料處置,常選擇低滲透岩石作為主要的地質障壁,低滲透岩石因其結構緻密,孔隙體積較低,滲透率主要由裂隙所主導,然而現地岩體不連續面分布複雜,加上體積過大,不利於現地試驗直接量測流體在裂隙岩體中的流動方式與裂隙受力變形特徵之關係。近年來,3D列印技術逐漸成熟,以數位模型為基礎,透過光敏樹脂和石膏粉末,以堆疊累積的方式來建構3D岩石模型,且因容易修改模型、無須製作模具、成型速度快等優點,該技術已運用在探討岩石力學領域方面。本研究利用裂隙參數(裂隙中心位置、開口寬、裂隙半徑和位態)生成裂隙網絡,並使用光固化3D列印技術列印裂隙岩體圓柱型試體,並利用高圍壓孔隙體積/滲透率量測儀進行滲透率和孔隙體積量測,以探討裂隙網絡岩體在不同圍壓下的滲透率行為以及裂隙受力閉合特性,同時也利用理論計算的方式,計算相同裂隙網絡滲透率條件下之水力平均內寬,並與透過孔隙體積量測獲得之力學平均內寬進行比較。四個試體量測到的滲透率值介於1.73×10-12 m2 ~ 2.73×10-12 m2 (圍壓介於0.3MPa ~ 4MPa),而孔隙體積介於715.92 mm3 ~ 1331.35 mm3 (圍壓介於1MPa ~ 4MPa)。計算得到的水力平均內寬介於37.25μm ~ 43.75μm (圍壓介於0.3MPa ~ 4MPa),其對應力的敏感性較低;而計算得到的力學平均內寬介於86.73μm ~ 161.29μm (圍壓介於1MPa ~ 4MPa),其對應力的敏感性較高。透過雙曲線和半對數曲線兩種不同內寬閉合模型進行擬合,發現兩種模型對於力學平均內寬閉合量擬合的相關係數介於0.91 ~ 0.99之間,能良好地描述力學平均內寬閉合量與有效應力之間的關係,而對於水力平均內寬閉合量擬合的相關係數則介於0.18 ~ 0.86之間,因水力平均內寬對有效應力的敏感性較差。力學平均內寬與水力平均內寬之比值介於2.13~4.21之間。
摘要(英) Low-permeability rocks are often used as the main geological barrier in natural gas storage, carbon dioxide storage and nuclear waste disposal. Low-permeability rock is dense in structure, low in pore volume, and permeability mainly dominated by its fractures. However, the overly large mass and the complex discontinuity make it unfavorable in the in-situ test which measures the relationship between flow pattern of fluid in fractured rock mass and deformation characteristics of fracture. In recent years, 3D printing technology has gradually matured. Using digital model as the foundation, 3D rock model is constructed by stacking and accumulating through photosensitive resin and gypsum powder. The technology has various advantages such as easy modification, requires no molds and fast forming and has been applied in rock mechanics fields for academic exploration. In order to investigate the permeability behavior of fractured network rock mass under different confining pressures and the closure characteristics of fractured forces, this study used the fracture parameters (fracture center position, aperture, fracture radius, and orientation) to generate a fracture network; the fractured rock mass cylindrical specimen was printed using photocuring 3D printing technology, and the permeability and pore volume measurement were performed using a high confining pressure pore volume/permeability instrument. At the same time, the theoretical calculation method is used to calculate the hydraulic average aperture under the same fracture network permeability. The hydraulic average aperture is then compared with mechanical average aperture, which is found via pore volume measurement. The permeability values measured by the four specimens ranged from 1.73×10-12 m2 to 2.73×10-12 m2 (confining pressure is between 0.3 MPa and 4 MPa), while the pore volume ranged from 715.92 mm3 to 1331.35 mm3. (confining pressure is between 1MPa and 4MPa). The calculated hydraulic average aperture is between 37.25μm and 43.75μm (confining pressure is between 0.3MPa and 4MPa), which is less sensitive to stress; the calculated mechanical average aperture is between 86.73μm and 161.29μm (confining pressure is between 1MPa and 4MPa), and its sensitivity to stress is high. Through the fitting of two different aperture closure models of hyperbolic and semi-logarithmic curves, it is found that the correlation coefficient between the two models of mechanical average aperture closure is between 0.91 and 0.99, which can well describe the relationship between the mechanical average aperture closure and the effective stress. The correlation coefficient for the fitting of the hydraulic average aperture closure is between 0.18 and 0.86, because the hydraulic average aperture is less sensitive to effective stress. The ratio between mechanical average aperture and hydraulic average aperture is between 2.13 and 4.21.
關鍵字(中) ★ 3D列印
★ 裂隙網絡
★ 滲透率
★ 孔隙體積
★ 力學平均內寬
★ 水力平均內寬
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
一、緒論 1
1.1 研究動機與目的 1
1.2 研究流程 1
1.3 論文架構 4
二、文獻回顧 5
2.1 裂隙網絡生成模型 5
2.2 3D列印方法 6
2.3 3D列印於岩石力學試驗的應用 7
2.4 裂隙岩體地下水流動分析 11
2.4.1 離散模式 11
2.4.2 擬連續模式 12
2.5 裂隙內寬特性 15
2.5.1 水力內寬 15
2.5.2 力學內寬 15
2.5.3 力學內寬隨應力之變化 16
三、研究方法 19
3.1 裂隙網絡試體設計 19
3.1.1 裂隙參數 20
3.1.2 OpenSCAD 21
3.2 Stereolithography (SLA) 列印方法 22
3.3 室內孔隙體積/滲透率之量測方法 24
3.3.1 滲透率之測量 25
3.3.2 孔隙體積之測量 26
3.4 力學平均內寬與水力平均內寬計算方法 29
3.4.1 力學平均內寬 29
3.4.2 水力平均內寬 31
3.5 裂隙正向閉合模型之擬合 32
3.6 列印試體試驗規劃 33
四、結果與討論 34
4.1 試體描述 34
4.2 滲透率與孔隙體積量測 36
4.2.1 滲透率量測完成解壓後再進行孔隙體積量測 36
4.2.2 孔隙體積量測完成解壓後再進行滲透率量測 38
4.3 力學平均內寬與水力平均內寬之計算結果 40
4.3.1 力學平均內寬 40
4.3.2 水力平均內寬 41
4.4正向閉合模型擬合結果 48
4.4.1 力學平均內寬閉合量擬合模型結果 48
4.4.2 水力平均內寬閉合量擬合模型結果 53
4.5 水力平均內寬與力學平均內寬關係 57
五、結論與建議 62
5.1 結論 62
5.2 建議 63
參考文獻 64
附錄A 67
裂隙中心位置分布及位態指令碼 67
附錄B 71
324條不連續面之裂隙參數 71
附錄C 76
本研究使用OpenSCAD指令說明 76
附錄D 77
OpenSCAD 程式碼 77
附錄E 123
調整初始正向勁度(K0)與形狀係數(c)以逼近實驗滲透率 123
參考文獻 [1] Suzuki, A., Watanabe, N., Li, K., and Horne, R. N., “Fracture network created by 3-D printer and its validation using CT images”, Water Resources Research, Vol 53(7), pp. 6330-6339, 2017.
[2] Oda, M., “Permeability tensor for discontinuous rock masses”, Geotechnique, Vol 35(4), pp. 483-495, 1985.
[3] Baecher, G. B., Lanney, N. A., and Einstein, H. H., “Statistical description of rock properties and sampling”, The 18th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, 1977.
[4] Song, X. C., and Xu, W. Y., “Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks, (I):generation of fracture network”, Chinese Journal of Rock Mechanics and Engineering, Vol 23(12), pp. 2015-2020, 2004.
[5] Einstein, H. H., Baecher, G. B., and Veneziano, D., Risk Analysis for Rock Slopes in Open Pit Mines – Final Technical Report, Massachusetts Institute of Technology, Publication No. R80(17), 1980.
[6] Long, J. C. S., “Investigation of equivalent porous medium permeability in networks of discontinuous fractures”, Ph.D. thesis, University of California, Berkeley, 1983.
[7] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., and Hui, D., “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Composites Part B : Engineering, Vol 143, pp. 172-196, 2018.
[8] Tian, W., Pei, Z. R., and Han, N., “A preliminary research on three-dimensional reconstruction and mechanical characteristics of rock mass based on CT scanning and 3D printing technology”, Yantu Lixue/Rock and Soil Mechanics, Vol 38, pp. 2297-2305, 2017.
[9] Wang, P. T., Liu, Y., Zhang L., Huang Z. J., and Cai M. F., “Preliminary study on uniaxial compressive properties of 3D printed fractured rock models:an experimental test”, Chinese Journal of Rock Mechanics and Engineering, Vol 37(2), pp. 364-373, 2018.
[10] Jian, Q., and Song, L. B., “Application and prospect of 3D printing technology to physical modeling in rock mechanics”, Chinese Journal of Rock Mechanics and Engineering, Vol 37(1), pp. 23-37, 2018.
[11] Head, D., and Vanorio, T., “Effects of changes in rock microstructures on permeability:3-D printing investigation”, Geophysical Research Letters, Vol 43(14), pp. 7494-7502, 2016.
[12] Ishutov, S., and Hasiuk, F. J., “3D printing Berea sandstone:Testing a new tool for petrophysical analysis of reservoirs”, Petrophysics, Vol 58(6), pp. 592-602, 2017.
[13] Min, K. B., Jing, L., and Stephansson, O., “Determining the equivalent permeability tensor for fracture rock masses using a stochastic REV approach:Method and application to the field data from Sellafield, UK”, Hydrogeology Journal, Vol 12(5), pp. 497-510, 2004.
[14] Long, J. C. S., Wilson, C. R., and Witherspoon, P. A., “Porous media equivalents for networks of discontinuous fractures”, Water Resources Research, Vol 18(3), pp. 645-658, 1982.
[15] Oda, M., “Modern developments in rock structure characterization”, Compressive Rock Engineering (edited by J. A. Hudson), Vol 1, pp. 185-200, Elsevier, New York, 1993.
[16] Snow, D. T., “Rock fracture spacings, openings, and porosities”, Journal of the Soil Mechanics and Foundations Division, Vol 94, pp. 73-91, 1968.
[17] Lee, C. H., and Farmer, I., Fluid Flow in Discontinuous Rocks, Chapman and Hall, London, p. 169, 1993.
[18] Snow, D. T., “Anisotropic permeability of fractured media”, Water Resource Research, Vol 5(6), pp. 1273-1289, 1969.
[19] Olsson, R., and Barton, N., “An improved model for hydromechanical coupling during shearing of rock joints”, International Journal of Rock Mechanics & Mining Sciences, Vol 38(3), pp. 317-329, 2001.
[20] Zimmerman, R. W., and Bodvarsson, G. S., “Hydraulic conductivity of rock fractures”, Transport in Porous Media, Vol 23(1), pp. 1-30, 1996.
[21] Bandis, S. C., Lumsden, A.C., and Barton, N. R., “Fundamentals of rock joint deformation”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol 20(6), pp. 249-268, 1983.
[22] Oda, M., “An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses”, Water Resources Research, Vol 22(13), pp. 1845-1856, 1986.
[23] Scheidegger, A. E., The physics of flow through porous media, third ed., University of Toronto Press., Toronto, 1974.
[24] 楊盛博,「利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙體積和滲透率之影響」,國立中央大學應用地質研究所,碩士論文,民國一百零四年。
[25] Klinkenberg, L. J., “The permeability of porous media to liquids and gases”, Drilling and Production Practice, American Petroleum Institute, New York, pp. 200-213, 1941.
[26] Tanikawa, W., and Shimamoto, T., “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks”, International Journal of Rock Mechanics and Mining Sciences, Vol 46(2), pp. 229-238, 2009.
[27] Zangerl, C., Evans, K. F., Eberhardt, E., and Loew, S., “Normal stiffness of fractures in granitic rock:A compilation of laboratory and in-situ experiments”, International Journal of Rock Mechanics and Mining Sciences, Vol. 45(8), pp. 1500-1507, 2008.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明