博碩士論文 106624012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.119.131.178
姓名 楊珮欣(Pei-Xin Yang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣東北部隱沒帶地震地動預估式之精進研究
(Further studies on ground-motion prediction equations for subduction-zone earthquakes in Northeast Taiwan)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地動預估式是地震危害度分析中重要的一項,由於地動預估式的標準差大小對於地震危害度分析結果有直接的影響;使用過大的標準差會導致過估地震危害度。此外,隱沒帶地震與一般淺部地殼地震的震源特性及衰減特性都不同,在分析地震危害時必須加以考量。隱沒帶地震又可以分為板塊界面型地震以及板塊內部型地震,兩者之衰減特性以及反應譜型亦有所不同,有必要分別做回歸,以得到更有代表性的反應譜及合理而較小的標準差。
相較於過去Lin and Lee (2008)研究以1992至2000年間之地震資料建立東北部隱沒帶地動預估式,本研究以1991年到2016年6月,年限共25年之中央氣象局自由場強地動觀測網計畫(TSMIP)以及台灣山區地震觀測網(MTN)蒐集之強震資料,篩選出隱沒帶界面型及內部型地震,使用混合效應模型且以最大概似法做回歸分析,並以連續型Vs30做為場址參數取代過去堅硬地盤、軟弱地盤之簡易分類,分別建立能代表兩型震源的尖峰地動加速度地動預估式,以及6個振動週期之反應譜加速度地動預估式(0.01秒、0.03秒、0.1秒、0.3秒、1秒、3秒),期能區分這兩種類型地震之尖峰地動加速度及反應譜的差異,並降低地動預估式之標準差。
成果顯示,將兩類型地震分開建立回歸式後,所得之標準差比前人之研究成果低,下降之幅度介於0.0019~0.2019間,且反應譜形狀亦看得出差異。界面型地震長週期震波含量豐富,反應譜平台較寬;內部型地震短週期震波含量豐富,反應譜平台較窄。
摘要(英) A ground-motion prediction equation (GMPE) plays a crucial role in probabilistic seismic hazard analysis (PSHA), and the standard deviation (sigma) of GMPE influences the outcome hazard level directly. The larger the sigma, the greater the hazard. For the purpose of effectiveness and reducing the sigma, we must develop different GMPEs for crustal sources and subduction-zone sources, respectively. Furthermore, subduction zone earthquakes involves interface earthquakes and intraslab earthquakes, we must consider also developing different GMPEs for the two different subduction-zone earthquakes, since the interface earthquakes may have different characteristics of attenuation and different shapes of response spectrum with the intraslab earthquakes.
In this study, we establish separate ground-motion relationships for interface earthquakes and intraslab earthquakes by using the earthquake data from Taiwan Strong-Motion Instrumentation Program (TSMIP) and Taiwan Mountain Seismic Network (MTN) with carefully baseline corrected and noise filtered. We test the effectiveness of different terms in a GMPE by stepwise regression in R, and the coefficients of the equation are determined using maximum likelihood estimattion and nonlinear mixed-effects model. The results show that the interface earthquakes and intraslab earthquakes do exhibit different characteristics of attenuation and different shapes of response spectrum; interface earthquakes contain more long-period motions and have a wider response spectrum, while intraslab earthquakes are rich in the high-frequency waves and have the narrower response spectrum shape, and the sigmas of the GMPEs are lower than that in the previous study.
關鍵字(中) ★ 隱沒帶
★ 地動預估式
關鍵字(英) ★ subduction-zone
★ ground-motion prediction equation
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 國外隱沒帶地動預估式及反應譜相關研究 3
1.2.2 台灣隱沒帶地動預估式及反應譜相關研究 5
第二章 研究區域背景概述 12
2.1 台灣地體構造簡介 12
2.2 台灣東北部隱沒帶構造 14
2.3 隱沒帶地震介紹 18
第三章 資料蒐集與處理 21
3.1 地震資料來源 21
3.2 地震及測站相關資訊蒐集 23
3.2.1 規模參數 23
3.2.2 距離參數 25
3.2.3 測站場址參數 26
3.2.4 震源機制參數 29
3.2.5 地動參數 30
3.3 地震歷時記錄之資料處理 30
3.3.1 基線校正 30
3.3.2 高通濾波 34
3.4 反應譜加速度之計算 36
第四章 研究方法 39
4.1 研究流程 39
4.2 隱沒帶地震之分類流程 41
4.3 強震資料選取 45
4.4 地動預估模型之建立 53
4.4.1 規模項 54
4.4.2 幾何擴散項 56
4.4.3 深度項 64
4.4.4 場址項 65
4.4.5 隱沒帶震源類型項 65
4.4.6 震源機制項 66
4.4.7 非彈性衰減項 66
4.5 地動預估式回歸分析方法 70
4.5.1 界面型地震與內部型地震地動衰減模型概述 70
4.5.2 最大概似法 71
4.5.3 混合效應模型 72
4.5.4 統計分析軟體-R 74
第五章 研究成果 75
5.1 地動預估式回歸成果 75
5.2 研究成果之界面型地震與內部型地震反應譜型差異 98
第六章 討論 101
6.1 本研究與其他研究成果之總標準差及資料適配情形比較 101
6.1.1 地動預估式之總標準差比較 101
6.1.2 本研究與其他研究之地動預估式與地震資料適配比較 103
6.2 與先前研究之反應譜譜型比較 118
6.3不同場址地盤下之反應譜型差異 120
6.4 35-50公里深之隱沒帶地震 122
6.5 距離大於300公里之內部型地震殘差 126
第七章 結論與建議 128
7.1 結論 128
7.2 建議 129
參考文獻 130
附錄A 本研究選用之台灣區域隱沒帶地震參數 A-1
附錄B 本研究選用之國外隱沒帶地震分布及參數 B-1
附錄C 本研究整理之各測站不同來源Vs30參數 C-1
附錄D PGA及各週期地動預估式殘差值長條統計圖 D-1
附錄E 35-50公里深之候選內部型地震資料與PGA_intraslab地動預估式適配圖 E-1
參考文獻 沈聖書(1996),由波形逆推地震震源機制解探討台灣東北外海隱沒與碰撞構造之特性,國立中央大學地球物理研究所碩士論文,共177頁。
李景亮、梁英文(1997)。結構耐震設計(3版)。台北:文笙。
林柏伸(2002),台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學應用地質研究所碩士論文,共135頁。
高嘉謙(2014),單站地動預估式建立及場址特定地震危害度分析,國立中央大學應用地質研究所碩士論文,共113頁。
陳燕玲(1995),台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,共172頁。
黃文紀(2018),台灣山區地震觀測網(Taiwan Mountain Seismic Network, MTN),台灣地震科學中心通訊,20,3-4。
葉庭瑜(2016),台灣東北部地區隱沒帶地震單站地動預估式之研究,國立中央大學應用地質研究所碩士論文,共153頁。
Abrahamson, N. A., Youngs, R. R., (1992). A stable algorithm for regression analyses using the random effects model. Bulletin of the Seismological Society of America, 82(1), 505-510.
Abrahamson, N. A., Gregor, N., and Addo, K. (2016). BC Hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32(1), 23-44. doi:10.1193/051712eqs188mr
Ambraseys, N. N., Simpson, K., and Bommer, J. J. (1996). Prediction of horizontal response spectra in Europe. Earthquake Engineering & Structural Dynamics, 25(4), 371-400.
Anderson, J. G., Lee, Y. J., Zeng, Y. H., and Day, S. (1996). Control of strong motion by the upper 30 meters. Bulletin of the Seismological Society of America, 86(6), 1749-1759.
Ariga, T., Kanno, Y., and Takewaki, I. (2006). Resonant behaviour of base‐isolated high‐rise buildings under long‐period ground motions. The Structural Design of Tall and Special Buildings, 15(3), 325-338.
Atkinson, G. M., Boore, D. M. (1997). Some comparisons between recent ground-motion relations. Seismological Research Letters, 68(1), 24-40.
Atkinson, G. M., Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America. 93(4), 1703-1729.
Bommer, J. J., Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96(6), 1967-1977.
Boore, D. M., (1993). Estimation of response spectra and peak accelerations from western North America earthquakes: DIANE Publishing.
Bugeja, R. (2011). Crustal attenuation in the region of the Maltese Islands using Coda Wave Decay. A dissertation presented to the Faculty of Science, Department of Physics, University of Malta.
Byrne, D. E., Davis, D. M., and Sykes, L. R. (1988). Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7(4), 833-857.
Campbell, K. W. (1981). Ground motion model for the central United States based on near-source acceleration data. In IN" PROC. EARTHQUAKES & EARTHQUAKE ENG.: THE EASTERN U. S.". (Vol. 1, pp. 213-232).
Campbell, K. W. (1989). The dependence of peak horizontal acceleration on magnitude, distance, and site effects for small-magnitude earthquakes in California and eastern North America. Bulletin of the Seismological Society of America, 79(5), 1311-1346.
Chen, K. H., Kennett, B. L. N., and Furumura, T. (2013). High‐frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118(2), 665-680.
Chang, T. Y., Cotton, F., and Angelier, J. (2001). Seismic attenuation and peak ground acceleration in Taiwan. Bulletin of the Seismological Society of America, 91(5), 1229-1246.
Cheng, C. T., Hsieh, P. S., Lin, P. S., Yen, Y. T., and Chan, C. H. (2015). Probability Seismic Hazard Mapping of Taiwan. 1-25. doi:10.1007/978-3-642-36197-5_100-1
Crouse, C. B., Vyas, Y. K., and Schell, B. A. (1988). Ground motions from subduction-zone earthquakes. Bulletin of the Seismological Society of America, 78(1), 1-25.
Crouse, C. B. (1991). Ground-motion attenuation equations for earthquakes on the Cascadia subduction zone. Earthquake Spectra, 7(2), 201-236.
Jones, T. D. (1985). Frequency-dependent seismic attenuation: Effect on wave propagation. In SEG Technical Program Expanded Abstracts 1985 (pp. 359-361). Society of Exploration Geophysicists.
Joyner, W. B., Boore, D. M. (1988). Measurement, characterization, and prediction of strong ground motion. In Earthquake Engineering and Soil Dynamics II, Proceedings of American Society of Civil Engineers Geotechnical Engineering Division Specialty Conference, Park City, Utah (pp. 43-102).
Kao, H., Shen, S. J., and Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region. Journal of Geophysical Research: Solid Earth, 103(B4), 7211-7229.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., and Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering geology, 129, 68-75.
Kuo, C. H., Chen, C. T., Lin, C. M., Wen, K. L., Huang, J. Y., and Chang, S. C. (2016b). S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan. Journal of Asian Earth Sciences, 128, 27-41.
Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., and Sun, P. L. (2018). Taiwan-specific model for Vs30 prediction considering between-proxy correlations. Earthquake Spectra, 34(4), 1973-1993.
Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B. (2001). Site classification of Taiwan free-field strong-motion stations. Bulletin of the Seismological Society of America, 91(5), 1283-1297.
Lee, C. T., Tsai, B. R. (2008). Mapping Vs30 in Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 19(6), 671-682.
Lee, C. T. (2008). Factors affecting topographic amplification- example from Taiwan. EGU General Assembly, Vienna, Australia, April.
Lee, C. T., Hsieh, B. S., Sung, C. H., and Lin, P. S. (2012). Regional Arias intensity attenuation relationship for Taiwan considering Vs 30. Bulletin of the Seismological Society of America, 102(1), 129-142.
Lin, K. C., Hu, J. C., Ching, K. En., Angelier, J., Rau, R. J., Yu, S. B., Tsai, C. H., Shin, T. C., and Huang, M. H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan. Journal of Geophysical Research: Solid Earth, 115, B07404 1-22.
Lin, P. S., Lee, C. T. (2008). Ground-Motion Attenuation Relationships for Subduction-Zone Earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220-240. doi:10.1785/0120060002
Liu, K. S., Tsai, Y. B. (2009). Large effects of Moho reflections (SmS) on peak ground motion in northwestern Taiwan. Bulletin of the Seismological Society of America, 99(1), 255-267.
Lungu, D., Cornea, T., Craifaleanu, I., and Demetriu, S. (1996). Probabilistic seismic hazard analysis for inelastic structures on soft soils. In Proceedings of Eleventh World Conference on Earthquake Engineering.
Mohraz, B. (1976). A study of earthquake response spectra for different geological conditions. Bulletin of the Seismological Society of America, 66(3), 915-935.
Molas, G. L., Yamazaki, F. (1995). Attenuation of earthquake ground motion in Japan including deep focus events. Bulletin of the Seismological Society of America, 85(5), 1343-1358.
Montalva, G. A., Bastías, N., and Rodriguez‐Marek, A. (2017). Ground‐motion prediction equation for the Chilean subduction zone. Bulletin of the Seismological Society of America, 107(2), 901-911. doi:10.1785/0120160221
Radu, C., Lungu, D., Demetriu, S., and Coman, O. (1994). Recurrence, attenuation and dynamic amplification for intermediate depth Vrancea earthquakes. In Proceedings of the XXIV General Assembly of the ESC (Vol. 3, pp. 1736-1745).
Rau, R. J. ,Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3-4), 517-532.
Seed, H. B., Ugas, C., and Lysmer, J. (1976). Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1), 221-243.
Seno, T., Stein, S., and Gripp, A. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth. 98(B10), 17941-17948.
Shakal, A. F., Huang, M. J., and Graizer, V. M. (2004). CSMIP Strong motion data processing. In Proc. invitational workshop on strong motion record processing.
Silva, W., Abrahamson, N. A. (1992). Quantification of long period strong ground motion attenuation for engineering design. In Proceedings of (strong Motion Instrumentation Program) smip92 seminar on seismological and engineering implications of recent strong-motion data. California Division of Mines and Geology, Sacramento, USA.
Thurber, C. H. (1983). Earthquake locations and three‐dimensional crustal structure in the Coyote Lake area, central California. Journal of Geophysical Research: Solid Earth, 88(B10), 8226-8236.
Tichelaar, B. W., Ruff, L. J. (1993). Depth of seismic coupling along subduction zones. Journal of Geophysical Research: Solid Earth, 98(B2), 2017-2037. doi:doi:10.1029/92JB02045
Wang, G., Tao, X. (2000). A new two-stage procedure for fitting attenuation relationship of strong ground motion. In Proceedings of the Sixth International Conference on Seismic Zonation.
Wells, D. L., Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
Wu, Y. M., Zhao, L., Chang, C. H., and Hsu, Y. J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661.
Youngs, R. R., Day, S. M., and Stevens, J. L. (1988). Near field ground motions on rock for large subduction earthquakes. In Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-Motion Evaluation (pp. 445-462). ASCE.
Youngs, R. R., Abrahamson, N. A., Makdisi, F. I., and Sadigh, K. (1995). Magnitude-dependent variance of peak ground acceleration. Bulletin of the Seismological Society of America, 85(4), 1161-1176.
Youngs, R. R., Chiou, S. J., Silva, W. J., and Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters. 68(1), 58-73.
Zhao, J. X., Jiang, F., Shi, P., Xing, H., Huang, H., Hou, R., Zhang, Y., Yu, P., Lan, X., Rhoades, D. A., Somerville, P. G., Irikura, K., and Fukushima, Y. (2016a). Ground‐motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4), 1535-1551. doi:10.1785/0120150056
Zhao, J. X., Liang, X., Jiang, F., Xing, H., Zhu, M., Hou, R., Zhang, Y., Lan, X., Rhoades, D. A., Irikura, K., Fukushima, Y., and Somerville, P. G. (2016b). Ground‐motion prediction equations for subduction interface earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4), 1518-1534.
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明