博碩士論文 106624015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.204.203.142
姓名 黃士修(Shih-Siou Huang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 測定砂岩有效應力係數及其對砂岩孔隙率/滲透率—深度關係曲線之影響
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土壤力學學理上最早認為圍壓與孔隙壓力之差為有效應力,即圍壓與孔隙壓力對有效應力之貢獻權重相等。然此一理論並不適用於岩石,故定義以有效應力係數表達孔隙壓力與圍壓對有效應力貢獻之權重關係。本研究欲測量砂岩之孔隙率/滲透率有效應力係數,並討論孔隙率/滲透率有效應力係數之差異。本研究選定多組砂岩為試體,並以氦氣作為孔隙流體,於不同圍壓及孔隙壓力下量測孔隙率/滲透率,藉此計算有效應力係數。結果顯示,利用孔隙率計算之有效應力係數χ範圍為 0.918 至 1.765,利用滲透率計算之有效應力係數κ範圍為 0.65 至 1.875。其中黏土含量較高的試體有效應力係數小於 1,黏土含量較低的試體有效應力係數大於 1。為了解此結果對石油工程關心之岩石孔隙率/滲透率-深度關係之影響,本研究使用實驗計算之有效應力係數,重新預測孔隙率/滲透率隨深度變化之結果,黏土含量較低的試體之初始孔隙率減小約 4%~18%,孔隙率之應力敏感係數減小約11%~30%,初始滲透率減小約 9%~81%,滲透率之應力敏感係數減小約0.8%~14%;黏土含量較高的試體之初始孔隙率增加約0.6%,孔隙率之應力敏感係數近乎不變,初始滲透率增加約 28%,滲透率之應力敏感係數增加約 0.6%。孔隙率隨深度變化考慮計算之孔隙率有效應力係數χ將造成孔隙率有 0%~9%之差異;滲透率隨深度變化考慮計算之滲透率有效應力係數κ後將造成滲透率有 50%~1900%之差異。
摘要(英) In theoretical soil mechanics, the difference between confining pressure and pore pressure was considered as effective stress, implying that confining and pore pressure have the same contribution weight to effective stress. However, this theory does not apply to rocks. Therefore, effective stress coefficients have been defined to express the relationship between the weight contributions of pore pressure and confining pressure to effective stress. This study investigated the effective stress coefficients of sandstone porosity and permeability and discussed the difference between the effective stress coefficients of porosity and permeability. Using multiple groups of sandstone as samples and helium gas as the pore fluid, this study measured the porosity and permeability under different confining pressure and pore pressures to calculate the effective stress coefficients. The result showed that the effective stress coefficient χ calculated using porosity ranged between 0.918 and 1.765; the effective stress coefficient κ calculated using permeability ranged between 0.65 and 1.875. The effective stress coefficient for the sample with high clay content was smaller than 1, whereas that for the sample with low clay content was larger than 1. To understand the influence of this result on the relationship between rock porosity/permeability and depth that is concerned by petroleum engineering, this study used the effective stress coefficients obtained in the experiment to reestimate the changes of porosity and permeability with depth. For the sample with low clay content, the initial porosity decreased by 4%–18%, the stress sensitivity coefficient for porosity decreased by 11%–30%, the initial permeability decreased by 9%–81%, and the stress sensitivity coefficient for permeability reduced by 0.8%–14%. For the sample with high clay content, the initial porosity increased by approximately 0.6%, the stress sensitivity coefficient for porosity remained almost the same, the initial permeability increased by 28%, and the stress sensitivity coefficient for permeability increased by 0.6%. The effective stress coefficient of porosity χ calculated considering the change of porosity with depth caused the porosity to have a 0%–9% difference. The effective stress coefficient of permeabilityκcalculated considering the change of permeability with depth caused the permeability to have a 50%–1900% difference.
關鍵字(中) ★ 孔隙率
★ 滲透率
★ 有效應力係數
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 ix
表目錄 xv
一、緒論 1
1.1 研究動機與目的 1
1.2 研究流程 2
1.3 論文架構 4
二、文獻回顧 5
2.1 有效應力及有效應力係數 5
2.2 孔隙率/滲透率有效應力係數 11
2.2.1孔隙率有效應力係數 11
2.2.2滲透率有效應力係數 13
2.3 孔隙率/滲透率有效應力相依之模型 19
2.3.1 孔隙率有效應力相依模型 19
2.3.2 滲透率有效應力相依模型 20
三、研究方法 21
3.1 實驗試體來源 21
3.2 微觀影像與顆粒粒徑分析 21
3.2.1 砂岩試體微觀構造分析 21
3.2.2 砂岩試體粒徑分析 25
3.3 孔隙率及滲透率之量測 27
3.3.1 孔隙率之量測 27
3.3.2 滲透率之量測 31
3.3.3 克林堡滑流效應修正 33
3.4有效應力係數計算 35
3.4.1利用實驗計算有效應力係數 35
3.4.2利用黏土殼層模型計算有效應力係數 37
3.4.3利用黏土顆粒模型計算有效應力係數 40
四、結果與討論 42
4.1 砂岩試體薄片觀察結果 42
4.2 CL1試體粒徑分析結果 45
4.3 孔隙率與滲透率之量測結果 47
4.3.1 孔隙率與淨壓力變化之相依關係 47
4.3.2 滲透率與淨壓力變化之相依關係 51
4.4 孔隙率和滲透率有效應力係數計算結果 55
4.4.1 孔隙率有效應力係數之計算 55
4.4.2 滲透率有效應力係數之計算 66
4.4.3 孔隙率和滲透率有效應力係數之比較 75
4.4.4 孔隙率與有效壓力變化之相依關係 77
4.5 孔隙率及滲透率有效應力係數計算結果與前人之差異 85
4.6 孔隙率及滲透率隨深度變化 89
4.6.1 考慮平面有效應力係數之孔隙率和滲透率隨深度變化 89
4.6.2 應力相依模型之應力敏感係數變化 97
4.6.3 有效應力係數隨深度變化 99
五、結論與建議 103
5.1 結論 103
5.2 建議 105
參考文獻 106
附錄A 112
參考文獻 劉建麟(2014),「利用電測資料推估台灣彰濱地區鑽井場址的地下應力場」,國立中央大學,碩士論文。
楊盛博(2015),「利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響」,國立中央大學,碩士論文。
Al-Wardy, W. (2003). Analytical and experimental study of the poroelastic behaviour of clean and clay-rich sandstones. Department of Earth Science and Engineering, Imperial College London, Ph.D. Dissertation,
Al-Wardy, W., and Zimmerman, R. W. (2004). Effective stress law for the permeability of clay-rich sandstones. Journal of Geophysical Research, Vol. 109, B04203, doi:10.01029/02003JB002836.
Athy, L. F. (1930). Density, porosity and compaction of sedimentary rocks. American Association of Petroleum Geologists Bulletin, Vol. 14(1), pp. 1-24.
Bernabe, Y. (1986). The effective pressure law for permeability in Chelmsford granite and Barre granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 23(3), pp. 267-275, doi:10.1016/0148‐9062(86)90972‐1.
Berryman, J. G. (1992). Effective stress for transport properties of inhomogeneous porous rock. Journal of Geophysical Research: Solid Earth, Vol. 97(B12), pp. 17409-17424, doi:10.1029/92JB01593.
Biot, M. A., and Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, Vol. 24, pp. 594-601.
Bjørlykke, K. (2014). Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Journal of Sedimentary Geology, Vol. 301, pp. 1-14.
Box, G. E. P., and Draper, N. R. (1987). Empirical model-building and response surfaces. New York: John Wiley & Sons.
Byant, S. L., Cade, C. A., and Evans, I. J. (1994). Analysis of permeability controls: a new approach. Journal of Clay Minerals, Vol. 29(4), pp. 491-501.
Cheng, A. H. D. (2016). Poroelasticity. Berlin: Springer.
Coyner, K. B. (1984). Effects of stress, pore pressure, and pore fluids on bulk strain, velocity, and permeability of rocks. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Ph.D. Dissertation.
David, C., Wong, T. F., Zhu, W., and Zhang, J. (1994). Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, Vol. 143, pp. 425-456, doi:10.1007/BF00874337.
Di Stefano, C., Ferro, V., and Mirabile, S. (2010). Comparison between grain-size analyses using laser diffraction and sedimentation method. Biosystems Engineering, Vol. 106, pp. 205-215, doi:10.1016/j.biosystemseng.2010.03.013.
Dickinson, G. (1953). Geological aspects of abnormal reservoir pressure in Gulf Coast Louisiana. American Association of Petroleum Geologists Bulletin, Vol. 37(2), pp. 410-432.
Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., and Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1141-1157, doi:10.1016/j.ijrmms.2010.06.019.
Falcon‐Suarez, I. H., Amalokwu, K., Martin, J. D., Callow, B., Robert, K., North, L., Sahoo, S. K., and Best, A. I. (2019). Comparison of stress‐dependent geophysical, hydraulic and mechanical properties of synthetic and natural sandstones for reservoir characterization and monitoring studies. Geophysical Prospecting, Vol. 67(4), pp.784-803, doi:10.1111/1365-2478.12699.
Geertsma, J. (1957). The effect of fluid pressure decline on volumetric changes of porous rocks. Transactions of the Metallurgical Society of AIME, Vol. 210, pp. 331-340.
Glubokovskikh, S., and Gurevich, B. (2015). Effect of micro-inhomogeneity on the effective stress coefficients and undrained bulk modulus of a poroelastic medium: a double spherical shell model. Geophysical Prospecting, Vol. 63(3), pp. 656-668, doi:10.1111/1365-2478.12222.
Hampton, J. C., and Boitnott, G. N. (2018). The misnomer of “Effective Stress” and its relation to Biot Coefficients. Paper presented at 52nd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, Washington, USA.
Hart, D. J., and Wang, H. F. (2010). Variation of unjacketed pore compressibility using Gassmann’s equation and an overdetermined set of volumetric poroelastic measurements. Geophysics, Vol. 75(1), pp. N9-N18, doi:10.1190/1.3277664.
Heller, R., Vermylen, J., and Zoback, M. (2014). Experimental investigation of matrix permeability of gas shales. American Association of Petroleum Geologists Bulletin, Vol. 98(5), pp. 975-995, doi:10.1306/09231313023.
Jones, F. O., and Owens, W. W. (1980). A laboratory study of low-permeability gas sands. Journal of Petroleum Technology, Vol. 32, pp. 1631-1640, doi:10.2118/7551-PA.
Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. Paper presented at Drilling and Production Practice. American Petroleum Institute, New York, USA.
Kwon, O., Kronenberg, A. K., Gangi, A. F., and Johnson, B. (2001). Permeability of Wilcox shale and its effective pressure law. Journal of Geophysical Research: Solid Earth, Vol. 106(B9), pp. 19339-19353, doi:10.1029/2001JB000273.
Li, M., Bernabé, Y., Xiao, W. I., Chen, Z. Y., and Liu, Z. Q. (2009). Effective pressure law for permeability of E‐bei sandstones. Journal of Geophysical Research: Solid Earth, Vol. 114, B07205, doi:10.1029/2009JB006373.
Moghadam, J. N., Mondol, N. H., Aagaard, P., and Hellevang, H. (2016). Effective stress law for the permeability of clay‐bearing sandstones by the Modified Clay Shell model. Greenhouse Gases: Science and Technology, Vol. 6(6), pp. 752-774, doi:10.1002/ghg.1612.
Morrow, C. A., Shi, L. Q., and Byerlee, J. D. (1984). Permeability of fault gouge under confining pressure and shear stress. Journal of Geophysical Research, Vol. 89(B5), pp. 3193-3200, doi:10.1029/JB089iB05p03193.
Müller, T. M., and Sahay P. N. (2012). Porosity perturbations and poroelastic compressibilities. Geophysics, Vol. 78(1), pp. A7–A11, doi:10.1190/geo2012-0129.1.
Neasham, J. W. (1977). The morphology of dispersed clay in sandstone reservoirs and its effect on sandstone shaliness, pore space and fluid flow properties. Paper presented at SPE Annual Fall Technical Conference and Exhibition. Society of Petroleum Engineers, Denver, Colorado, USA.
Picard, M. D. (1971). Classification of fine-grained sedimentary rocks. Journal of Sedimentary Research, Vol. 41(1), pp. 179-195, doi:10.1306/74D7221B-2B21-11D7-8648000102C1865D.
Powers, M. C. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Research, Vol. 23(2), pp. 117-119, doi:10.1306/d4269567-2b26-11d7-8648000102c1865d.
Prothero, D.R., and Schwab, F. (2013). Sedimentary Geology: An introduction to sedimentary rocks and stratigraphy Third Edition. New York: W.H Freeman and Company.
Robin, P. Y. F. (1973). Note on effective pressure. Journal of Geophysical Research, Vol. 78(14), pp. 2434-2437, doi:10.1029/JB078i014p02434.
Seeburger, D. A., and Nur, A. (1984). A pore space model for rock permeability and bulk modulus. Journal of Geophysical Research: Solid Earth, Vol 89(B1), pp. 527-536, doi:10.1029/JB089iB01p00527.
Shi, T., and Wang, C. Y. (1986). Pore pressure generation in sedimentary basins: overloading versus aquathermal. Journal of Geophysical Research, Vol. 91(B2), pp.2153-2162, doi:10.1029/JB091iB02p02153.
Terry, R. D., and Chilingar, G. V. (1955). Summary of “Concerning some additional aids in studying sedimentary formations" by MS Shvetsov. Journal of Sedimentary Research, Vol. 25(3), pp. 229-234, doi:10.1306/74D70466-2B21-11D7-8648000102C1865D.
Terzaghi, K. (1925). Principles of soil mechanics: I – phenomena of cohesion of clays. IV – settlement and consolidation of clay. Engineering News – Record, Vol. 95(3), pp. 874-878.
Walls, J., and Nur, A. (1979). Pore pressure and confining pressure dependence of permeability in sandstone. Paper presented at 7th Formation Evaluation Symposium, Canadian Well Logging Society, Calgary, Alberta, Canada.
Walsh, J. B. (1981). Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 18(5), pp. 429−435, doi:10.1016/0148-9062(81)90006-1.
Warpinski, N. R., and Teufel, L. W. (1992). Determination of the effective-stress law for permeability and deformation in low-permeability rocks. Society of Petroleum Engineers Formation Evaluation, Vol. 7(2), pp. 123-131, doi:10.2118/20572-PA.
Wen, B., Aydin, A., and Duzgoren-Aydin, N. S. (2002). A comparative study of particle size analyses by sieve-hydrometer and laser diffraction methods. Geotechnical Testing Journal, Vol. 25(4), pp. 434-442, doi:10.1520/GTJ11289J.
Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, Vol. 30(5), pp. 377-392.
Worthington, P. F. (2008). A diagnostic approach to quantifying the stress sensitivity of permeability. Journal of Petroleum Science and Engineering, Vol. 61(2-4), pp. 49-57, doi:10.1016/j.petrol.2008.03.003.
Xiao, W. L., Jiang, L., Li, M., Zhao, J. Z., Zheng, L. L., Li, X. F., and Zhang, Z. P. (2015). Effect of clay minerals on the effective pressure law in clay-rich sandstones. Journal of Natural Gas Science and Engineering, Vol. 27, pp. 1242-1251, doi:10.1016/j.jngse.2015.09.067.
Zhou, X., Ghassemi, A., Riley, S., and Roberts, J. (2017). Biot’s Effective Stress Coefficient of mudstone source rocks. Paper presented at 51st US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, San Francisco, California, USA.
Zoback, M. D., and Byerlee, J. D. (1975). Permeability and effective stress, Geologic notes. American Association of Petroleum Geologists Bulletin, Vol. 59(1), pp. 154-158.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明