博碩士論文 106624603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.207.240.230
姓名 黎進明(Tan-Minh Le)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用3D列印機列印人造單一節理之力學內寬及水力內寬
(Mechanical Aperture and Hydraulic Aperture of Synthetic Single Joint Printed by 3D Printer)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
因為節理經常充當岩體的弱面以及流體路徑,節理岩體的水力-力學特性的描述是岩石力學中的一項艱鉅任務。其中,節理粗糙度對於裂隙的水力傳導係數以及力學行為有直接的影響,它們之間複雜的相互作用自Barton提出岩體節裡面粗糙度(JRC)以來,在過去的四十年間不斷的被研究。本研究期望藉由3D列印技術創造出可量化的單一節裡面,並使用高圍壓孔隙率-滲透率量測系統 (YOKO 2) ,觀察擁有不同輪廓,但有相同JRC的節理面是否能夠有相同的水力-力學特性。試體首先由AutoCAD製作可定量的JRC節裡面,並利用3D列印技術以Vero Pure White材料製作試體,最後使用HDI 120 3D雷射掃描儀確認列印出的試體是否能夠符合設計。這種試體製作方式可以消除岩體的天然異質性,獲得能夠純粹的探討裂隙行為的機會。實驗結果表明,隨著有效圍壓的變化,裂隙試體的孔隙率-滲透率變化是能夠被觀察的,並在力學-水力特性的變化有一定程度上的表述。但本研究亦認為,3D列印製作的試體沒有辦法擁有岩石的力學特性,這關乎到了列印方向、列印間隔以及時間等因素。
關鍵字:力學內寬,水力內寬,JRC,匹配關節,不匹配關節,3D列印
摘要(英) Characterizing the hydro-mechanical behavior of jointed rock mass is one of the challenging tasks in rock mechanics because joints frequently act as weak planes and fluid paths of the rock masses. Among others, joint roughness has a direct influence on both hydraulic conductivity of fractures and the mechanical behaviors of rock joints. The interaction between them is a complex process and has been studied in the past four decades since Barton introduced the Joint Roughness Coefficient (JRC). This main research purpose is to test if the hydro-mechanical behaviors are identical for joints with the same JRC. A new methodology for creating a representative replica of single joint with pre-existing roughness of quantifiable morphology is suitable for testing by the YOKO2 system, allowing the characterization at various stresses and confining pressure. The AutoCAD software, three-dimensional (3D) scanning and 3D printer have been used to design and create printed samples in Vero Pure White materials for standard rigid opaque plastics with the same JRC but different geometry. The surface coordinates of the samples taken with HDI 120 3D laser scanners and JRC were calculated to compare the target values and the design values. The mechanical aperture and hydraulic aperture are measured directly via YOKO2 system under different confining stresses. Scanner results showed that the method was capable of generating joint specimens with similar JRC suitable for the research target. This method is shown to create identical morphological geometry many times, allowing us to identify basic behavior by eliminating natural heterogeneity and experiment under various conditions. The experiment results indicate an evident hysteresis in the aperture with varying effective confining pressure. The effective confining pressure changes cause a change in aperture. Although this study method is particularly successful in investigated the hydraulic and mechanical aperture of different profiles with the same JRC. However, this study encountered significant challenge the printed material does not behave in a rock-like manner, further improvements are needed to expand the application of 3D printers in the field of rock mechanics. Here, this study only shows a few influential factors, such as the printing direction and time printing intervals. There are still many influencing and uncertainties factors that have not been adequately studied.
關鍵字(中) ★ 力學內寬
★ 水力內寬
★ JRC
★ 匹配關節
★ 不匹配關節
★ 3D列印
關鍵字(英) ★ Mechanical aperture
★ hydraulic aperture
★ JRC
★ matched joint
★ mismatched joint
★ 3D Printer
論文目次 LIST OF CONTENTS
摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
LIST OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xv
LIST OF NOTATIONS xvii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. METHODOLOGY 5
2.1. Sample creation 5
2.2. Morphology quantification 19
2.3. Description of an experimental study 22
2.3.1. Fluid flow measurement 25
2.3.2. Pore volume measurement 27
2.4. Fitting equation of the fracture closure model 31
2.5. Statistical validation of the experiment results 33
CHAPTER 3. RESULTS AND DISCUSSIONS 37
3.1. Sample preparation 37
3.1.1. Printing direction (x’z’and x’y’) 38
3.1.2. Sample profile (P1, P2 and P3) 38
3.1.3. Matched and Mismatched joints (Mat and Mis) 39
3.2. Scanned results of the printed samples 45
3.3. Influence of stress on E and e of 3D samples and relation between E vs e as well as ratio of E/e vs e 51
3.4. Repeatability of measured E and e 62
3.4.1. Mat_P1 mechanical aperture 63
3.4.2. Mat_P1 hydraulic aperture 65
3.4.3. Mis_P1 mechanical aperture 65
3.4.4. Mis_P1 hydraulic aperture 65
3.4.5. Mis_P2 hydraulic aperture 66
3.5. Influence of JRC value on E and e 71
3.6. Influence of different profile on E and e 73
3.6.1. Matched joint 73
3.6.2. Mismatched joint 75
3.7. Influence of difference of time printing periods on E and e 81
3.7.1. Matched joint P2 81
3.7.2. Matched joint P1 82
3.8. Influence of difference of printing direction on E and e 86
3.8.1. Matched joint 86
3.8.2. Mismatched joint 86
CHAPTER 4. CONCLUSIONS 91
REFERENCES 94
APPENDIX A 98
APPENDIX B 113
APPENDIX C 118
參考文獻 REFERENCES
Abuqubu, J., Al Dwairi, R. A., Hadi, N. A., Merkel, B., Dunger, V., & Laila, H. A. (2016). Geological and Engineering Properties of Granite Rocks from Aqaba Area, South Jordan. Geomaterials, 06(01), 18–27. https://doi.org/10.4236/gm.2016.61002
Bandis, S. C. (1980). Experimental studies of scale effects on shear strength and deformation of rock joints, Ph.D. thesis, Univ. of Leeds, 385 pp.
Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983). Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences, 20(6), 249-268.
Barton, N. (1973). Review of a new shear-strength criterion for rock joints. Engineering Geology. https://doi.org/10.1016/0013-7952(73)90013-6
Barton, N. (1978). Suggested methods for the quantitative description of discontinuities in rock masses. ISRM, International Journal of Rock Mechanics and Mining Sciences, 15(6), 319-368.
Barton, N. (1982). Shear strength investigation for surface mining. 3rd Int. Conf. Stability in Surface Mining, C.O. Brawner Editor, 171-196. https://doi.org/10.1016/0148-9062(79)91476-1
Barton, N., Bandis, S., & Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences, 22(3), 121–140. https://doi.org/10.1016/0148-9062(85)93227-9
Barton, N., & Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock Mechanics Felsmechanik Mécanique Des Roches, 10(1–2), 1–54. https://doi.org/10.1007/BF01261801
Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886
Brown, S. R., & Scholz, C. H. (1985). Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research, 90(B14). https://doi.org/10.1029/jb090ib14p12575
Davis, J. C. (1986). Statistics and Data Analysis in Geology, Second Ed., Wiley, New York, 646 pp.
Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., & Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141–1157. https://doi.org/10.1016/j.ijrmms.2010.06.019
Esaki, T., Du, S., Mitani, Y., Ikusada, K., & Jing, L. (1999). Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. International Journal of Rock Mechanics and Mining Sciences, 36(5), 641–650. https://doi.org/10.1016/S0148-9062(99)00044-3
Fereshtenejad, S., & Song, J. J. (2016). Fundamental study on applicability of powder-based 3D printer for physical modeling in rock mechanics. Rock Mechanics and Rock Engineering, 49(6), 2065–2074. https://doi.org/10.1007/s00603-015-0904-x
Gangi, A. F. (1978). Variation of whole and fractured porous rock permeability with confining pressure. International Journal of Rock Mechanics and Mining Sciences, 15(5), 249–257. https://doi.org/10.1016/0148-9062(78)90957-9
Gentier, S., Riss, J., Archambault, G., Flamand, R., & Hopkins, D. (2000). Influence of fracture geometry on shear behavior. International Journal of Rock Mechanics and Mining Sciences, 37(1–2), 161–174. https://doi.org/10.1016/S1365-1609(99)00096-9
Goodman, R. E. (1974). The mechanical properties of joints, paper presented at Third Congress of the International Society for Rock Mechanics, Denver, Colo, 127-140.
Goodman, R. E. (1976). Methods of Geological Engineering in Discontinuous Rocks, West, New York, 472 pp.
Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland. https://doi.org/10.5075/epfl-thesis-2404
Hakami, E. (1995). Aperture distribution of rock fractures. Ph.D. Thesis, Division of Engineering Geology, Royal Institute of Technology, Stockholm.
Huang, S. L., Oelfke, S. M., & Speck, R. C. (1992). Applicability of fractal characterization and modelling to rock joint profiles. International Journal of Rock Mechanics and Mining Sciences, 29(2), 89–98. https://doi.org/10.1016/0148-9062(92)92120-2
Jang, H. S., Kang, S. S., & Jang, B. A. (2014). Determination of Joint Roughness Coefficients Using Roughness Parameters. Rock Mechanics and Rock Engineering, 47(6), 2061–2073. https://doi.org/10.1007/s00603-013-0535-z
Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. In Drilling and Production Practice, American Petroleum Institute, 200–213.
Kulatilake, P. H. S. W., Shou, G., Huang, T. H., & Morgan, R. M. (1995). New peak shear strength criteria for anisotropic rock joints. International Journal of Rock Mechanics and Mining Sciences, 32(7), 673–697. https://doi.org/10.1016/0148-9062(95)00022-9
Kulatilake, P. H. S. W., Um, J., & Pan, G. (1998). Requirements for accurate quantification of self-affine roughness using the variogram method. International Journal of Solids and Structures, 35(31–32), 4167–4189. https://doi.org/10.1016/S0020-7683(97)00308-9
Lanaro, F. (2000). A random field model for surface roughness and aperture of rock fractures. International Journal of Rock Mechanics and Mining Sciences, 37(8), 1195–1210. https://doi.org/10.1016/S1365-1609(00)00052-6
Lee, H. S., & Cho, T. F. (2002). Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mechanics and Rock Engineering, 35(4), 299–318. https://doi.org/10.1007/s00603-002-0028-y
Maerz, N. H., & Franklin, J. A. (1990): Roughness scale effect and fractal dimension. In:Proc., Int. Workshop on Scale Effects in Rock Masses, Loen, 121–125.
Makurat, A., Barton, N., Rad, N. S., & Bandis, S. (1990): Joint conductivity variation due to normal and shear deformation. Proc., Int. Symp. on Rock Joints. Loen, Norway, 535–540.
Martin, W. E., & Bridgmon, K. D. (2012). Quantitative and statistical research methods From hypothesis to results. Journal of Chemical Information and Modeling, 1–498. https://doi.org/10.1017/CBO9781107415324.004
Myers, N. O. (1962). Characterization of surface roughness. Wear, 5(3), 182–189. https://doi.org/10.1016/0043-1648(62)90002-9
Olsson, R., & Barton, N. (2001). An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences, 38(3), 317–329. https://doi.org/10.1016/S1365-1609(00)00079-4
Papaliangas, T. T., Lumsden, A. C., & Hencher, S. R. (1996). Prediction of in situ shear strength of rock joints. In Prediction and performance in rock mechanics and rock engineering , 143-149.
Park, J. W., & Song, J. J. (2013). Numerical method for the determination of contact areas of a rock joint under normal and shear loads. International Journal of Rock Mechanics and Mining Sciences, 58, 8–22. https://doi.org/10.1016/j.ijrmms.2012.10.001
Raju, T. N. (2005). William Sealy Gosset and William A. Silverman: two “students” of science. Pediatrics, 116(3), 732-735. https://doi.org/10.1542/peds.2005-1134
Renshaw, C. E. (1995). On the relationship between mechanical and hydraulic apertures in rough‐walled fractures. Journal of Geophysical Research: Solid Earth, 100(B12), 24629-24636. https://doi.org/10.1029/95jb02159
Scheidegger, A. E. (1958). The physics of flow through porous media. Soil Science, 86(6), 355 pp.
Singh, K. K., Singh, D. N., & Ranjith, P. G. (2015). Laboratory Simulation of Flow through Single Fractured Granite. Rock Mechanics and Rock Engineering, 48(3), 987–1000. https://doi.org/10.1007/s00603-014-0630-9
Son, B. K., Lee, Y. K., & Lee, C. I. (2004). Elasto-plastic simulation of a direct shear test on rough rock joints. International Journal of Rock Mechanics and Mining Sciences, 41(SUPPL. 1). https://doi.org/10.1016/j.ijrmms.2004.03.066
Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. International Journal of Rock Mechanics and Mining Sciences, 46(2), 229–238. https://doi.org/10.1016/j.ijrmms.2008.03.004
Tatone, B. S. A., & Grasselli, G. (2010). A new 2D discontinuity roughness parameter and its correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 47(8), 1391–1400. https://doi.org/10.1016/j.ijrmms.2010.06.006
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics. New York: John Wiley & Sons.
Tse, R., & Cruden, D. M. (1979). Estimating joint roughness coefficients. International Journal of Rock Mechanics and Mining Sciences, 16(5), 303–307. https://doi.org/10.1016/0148-9062(79)90241-9
Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980). Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6), 1016–1024. https://doi.org/10.1029/WR016i006p01016
Yeo, I. W., De Freitas, M. H., & Zimmerman, R. W. (1998). Effect of shear displacement on the aperture and permeability of a rock fracture. International Journal of Rock Mechanics and Mining Sciences, 35(8), 1051–1070. https://doi.org/10.1016/S0148-9062(98)00165-X
Yu, X., & Vayssade, B. (1991). Joint profiles and their roughness parameters. International Journal of Rock Mechanics and Mining Sciences And, 28(4), 333–336. https://doi.org/10.1016/0148-9062(91)90598-G
Zhang, G., Karakus, M., Tang, H., Ge, Y., & Zhang, L. (2014). A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses. International Journal of Rock Mechanics and Mining Sciences, 72, 191–198. https://doi.org/10.1016/j.ijrmms.2014.09.009
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明