博碩士論文 106624605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.139.104.214
姓名 陳德輝(Tran Duc Huy)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣西南部因地下水開發與構造活動引致地層下陷之研究
(Quantify Land Subsidence due to Groundwater Extraction and Tectonic Activity in Southwestern Taiwan)
相關論文
★ 水文地質概念模型差異對污染傳輸模擬之影響★ 2016美濃地震引致嘉南平原與屏東平原地下水文特性變化研究
★ Evaluating Geological Model Uncertainty Caused by Data Sufficiency – Using Groundwater Flow and Land Subsidence Modeling as the Example★ 序率熱–水–力全耦合模式在相依參數條件下之交互作用行為探討
★ 整合河床出入滲試驗與數值模擬探討東港溪流域地下水與 河川交換量季節特徵★ A Three-Step Time-Series Method for Assessing the Barometric Efficiency in the Donggang River Watershed, Taiwan
★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan★ 以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例
★ Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation★ 異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例
★ 發展耦合HMC數值模式以探討地質模型複雜度對海水入侵與地層下陷的影響:以台灣屏東平原為例★ Spatiotemporal Variations of the Skeletal Specific Storage in Choushui River Aquifer System, Taiwan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 屏東平原位於菲律賓海板塊與歐亞板塊交彙的活躍邊界處,是台灣因自然因素和人類影響而引起的土地變形最活躍的地區之一。本研究提出了一個新穎的概念模型,以量化分別由地下水開發和板塊構造所引起的地層下陷量。全球定位系統(GPS)的資料呈現垂向位移的總下陷量,磁環分層式地層下陷監測井(MLCW)則能夠測量從地表到200公尺深度不同位置的垂直變形。本研究採用佳冬與枋寮MLCW地層下陷觀測資料,以及與其鄰近的CLON和FALI GPS觀測站資料,進行深層地層壓縮分析。根據MLCW 2007至2016年的觀測資料,佳冬地區的主要壓縮深度位於距地表104公尺內;枋寮地區的主要壓縮帶則在深度101-156公尺範圍內,與當地用水型態有關。此外,GPS站的垂向位移大於MLCW的垂向位移量,顯示在200公尺的深度之下仍有額外的垂向變形量。根據本研究分析,此變形並非主要導因於地下水抽取和自然壓密行為,而可能與台灣造山帶的構造釋壓和構造擠壓等板塊構造活動有關,其垂向變形速度約0.9至-4.6毫米/年。因此,本研究成功地分離了由於地下水開發和構造活動引起的地層下陷量,研究結果可提供地下水資源管理與屏東平原構造物理研究的參考。
摘要(英) Pingtung coastal plain, located at the active convergent boundary between Philippine Sea plate and Eurasian plate, is one of the most active areas regarding land deformation induced by both natural issues and human impact in Taiwan. This study proposed a novel conceptual model in order to quantify land subsidence caused by groundwater extraction and plate tectonics, respectively. The data of the Global Positioning System (GPS) stations are used to illustrate the total subsidence concerning vertical displacement. A system called multi-layer compaction monitoring well (MLCW) is able to measure the vertical deformation in different depths from the earth′s surface to the depth of 200 m. There are two GPS stations named CLON and FALI, which are set close to the MLCWs and located in Jiadong and Fangliao areas, respectively. According to MLCW survey data from 2007 to 2016, the major compaction zone is within 104 meters from Earth′s surface in the Jiadong area. In Fangliao area, the major compaction zone is in the range of 101-156 m of the soil stratigraphy. Moreover, the vertical displacement of GPS stations is larger than that of MLCW, which indicates that there exists additional vertical deformation beyond the depth of 200 m. From the analyses, this deformation should not be due to groundwater extraction and natural compaction. The phenomenon could be due to the plate tectonic activities associated with tectonic escape and tectonic extrusion of the Taiwan orogeny. The vertical deformation rate ranges from 0.9 to -4.6 mm/year. Subsidence due to groundwater extraction and tectonic activity is thus successfully separated. So, this idea is not only a key issue for groundwater management but also for tectonophysical studies in Pingtung plain, Taiwan.
關鍵字(中) ★ 地層下陷
★ 構造活動
★ 地下水開採
★ GPS
★ 分層式地層下陷監測井
★ 台灣屏東平原
關鍵字(英) ★ Land subsidence
★ Tectonic activity
★ Groundwater extraction
★ GPS
★ Multi-layer compaction monitoring well
★ Taiwan Pingtung plain
論文目次 Abstract ii
Acknowledgments v
List of Contents vi
List of Figures vi
List of Tables ix
List of Abbreviations x
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. BACKGROUND 6
2.1 Study area 6
2.2 Monitoring systems 11
CHAPTER 3. METHODOLOGY 22
3.1 Time series analysis 22
3.1.1 Correlation analysis 22
3.1.2 Cumulative rainfall departure 23
3.1.3 Frequency analysis 23
3.2 Major compaction zone assessment 24
3.3 Conceptual model for tectonic estimation 25
CHAPTER 4. RESULTS AND DISCUSSION 28
4.1 Data analysis 28
4.1.1 Major compaction zone 28
4.1.2 Subsidence in the wet and dry seasons 31
4.1.3 Correlation analyses and frequency analyses 34
4.2 Estimating tectonic subsidence 40
CHAPTER 5. CONCLUSIONS 55
REFERENCE 57
參考文獻 [1] D. L. Galloway and T. J. Burbey, ”Review: Regional land subsidence accompanying groundwater extraction,” Hydrogeology Journal, vol. 19, no. 8, pp. 1459-1486, 2011, doi: 10.1007/s10040-011-0775-5.
[2] S.-J. Wang, C.-H. Lee, J.-W. Chen, and K.-C. Hsu, ”Combining gray system and poroelastic models to investigate subsidence problems in Tainan, Taiwan,” Environmental Earth Sciences, vol. 73, no. 11, pp. 7237-7253, 2015, doi: 10.1007/s12665-014-3902-5.
[3] B. M. Das and K. Sobhan, “Principles of Geotechnical Engineering”, Cengage learning, pp. 353-408, 2013.
[4] W. M. Alley, R. W. Healy, J. W. LaBaugh, and T. E. Reilly, ”Flow and storage in groundwater systems,” Science, vol. 296, no. 5575, pp. 1985-1990, 2002, doi: 10.1126/science.1067123.
[5] L. E. Erban, S. M. Gorelick, and H. A. Zebker, ”Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam,” Environmental Research Letters, vol. 9, no. 8, p. 08410, 2014, doi:10.1088/1748-9326/9/8/084010.
[6] W.-C. Hung, C. Hwang, C.-P. Chang, J.-Y. Yen, C.-H. Liu, and W.-H. Yang, ”Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan,” Environmental Earth Sciences, vol. 59, no. 7, pp. 1535-1548, 2009, doi: 10.1007/s12665-009-0139-9.
[7] W.-C. Hung et al., ”Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise,” Remote Sensing, vol. 10, no. 2, 2017, doi: 10.3390/rs10010040.
[8] C.-S. Hsieh, T.-Y. Shih, J.-C. Hu, H. Tung, M.-H. Huang, and J. Angelier, ”Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan,” Natural Hazards, vol. 58, no. 3, pp. 1311-1332, 2011, doi: 10.1007/s11069-011-9734-7.
[9] K.-C. Hsu, C.-H. Wang, K.-C. Chen, C.-T. Chen, and K.-W. Ma, ”Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan,” Hydrogeology Journal, vol. 15, no. 5, pp. 903-913, 2006, doi: 10.1007/s10040-006-0137-x.
[10] H. Sun, D. Grandstaff, and R. Shagam, ”Land subsidence due to groundwater withdrawal: potential damage of subsidence and sea level rise in southern New Jersey, USA,” Environmental Geology, vol. 37, no. 4, pp. 290-296, 1999.
[11] S.-J. Wang, ”Dimensional upgrade approach for spatial-temporal fusion of trend series in subsidence evaluation,” Entropy, vol. 17, no. 5, pp. 3035-3052, 2015, doi:10.3390/e17053035.
[12] C. P. Chang, T. Y. Chang, C. T. Wang, C. H. Kuo, and K. S. Chen, ”Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan,” Mathematics and Computers in Simulation, vol. 67, no. 4-5, pp. 351-359, 2004, doi: 10.1016/j.matcom.2004.06.003.
[13] W.-C. Hsu, H.-C. Chang, K.-T. Chang, E.-K. Lin, J.-K. Liu, and Y.-A. Liou, ”Observing Land Subsidence and Revealing the Factors That Influence It Using a Multi-Sensor Approach in Yunlin County, Taiwan,” Remote Sensing, vol. 7, no. 6, pp. 8202-8223, 2015, doi: 10.3390/rs70608202.
[14] K.-E. Ching, R.-J. Rau, J.-C. Lee, and J.-C. Hu, ”Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005,” Earth and Planetary Science Letters, vol. 262, no. 3-4, pp. 601-619, 2007, doi: 10.1016/j.epsl.2007.08.017.
[15] J.-C. Hu, H.-T. Chu, C.-S. Hou, T.-H. Lai, R.-F. Chen, and P.-F. Nien, ”The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements,” Quaternary International, vol. 147, no. 1, pp. 62-69, 2006, doi: 10.1016/j.quaint.2005.09.007.
[16] F. Zanello, P. Teatini, M. Putti, and G. Gambolati, ”Long term peatland subsidence: Experimental study and modeling scenarios in the Venice coastland,” Journal of Geophysical Research, vol. 116, no. F4, 2011, doi: 10.1029/2011jf002010.
[17] C. Zoccarato, P. S. J. Minderhoud, and P. Teatini, ”The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam,” Sci Rep, vol. 8, no. 1, p. 11437, Jul 30 2018, doi: 10.1038/s41598-018-29734-7.
[18] E. Knappe, R. Bendick, H. R. Martens, D. F. Argus, and W. P. Gardner, ”Downscaling Vertical GPS Observations to Derive Watershed‐Scale Hydrologic Loading in the Northern Rockies,” Water Resources Research, vol. 55, no. 1, pp. 391-401, 2019, doi: 10.1029/2018wr023289.
[19] Martens.HR., ”Using Earth Deformation Caused by Surface Mass Loading to Constrain the Elastic Structure of the Crust and Mantle”, Doctoral dissertation, California Institute of Technology, 2016.
[20] C. S. Chiang, H. S. Yu, and Y. W. Chou, ”Characteristics of the wedge top depozone of the southern Taiwan foreland basin system,” Basin Research, vol. 16, no. 1, pp. 65-78, 2004, doi: 10.1111/j.1365-2117.2003.00222.x.
[21] C.-S. Hou et al., ”Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan,” Comptes Rendus Geoscience, vol. 337, no. 13, pp. 1184-1193, 2005, doi: 10.1016/j.crte.2005.05.012.
[22] C. S. Ting, Y. Zhou, J. D. Vries, and I. Simmers, ”Development of a preliminary ground water flow model for water resources management in the Pingtung Plain, Taiwan,” Groundwater, vol. 36, no. 1, pp. 20-36, 1998.
[23] F. T. Wu, ”Recent tectonics of Taiwan,” Journal of Physics of the Earth, vol. 26, no. Supplement, pp. S265-S299, 1978.
[24] S.-B. Yu, H.-Y. Chen, and L.-C. Kuo, ”Velocity field of GPS stations in the Taiwan area,” Tectonophysics, vol. 274, no. 1-3, pp. 41-59, 1997..
[25] A. T. Lin and A. B. Watts, ”Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin,” Journal of Geophysical Research: Solid Earth, vol. 107, no. B9, pp. ETG 2-1-ETG 2-19, 2002, doi: 10.1029/2001jb000669.
[26] J.-C. Hu et al., ”Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan,” Journal of Asian Earth Sciences, vol. 31, no. 3, pp. 287-302, 2007, doi: 10.1016/j.jseaes.2006.07.020.
[27] O. Lacombe, F. Mouthereau, J. Angelier, and B. Deffontaines, ”Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan,” Tectonophysics, vol. 333, no. 1-2, pp. 323-345, 2001.
[28] F. Mouthereau, O. Lacombe, B. Deffontaines, J. Angelier, and S. Brusset, ”Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross sections,” Tectonophysics, vol. 333, no. 1-2, pp. 293-322, 2001.
[29] S. E. Lallemand and H. Tsien, ”An introduction to active collision in Taiwan,” Tectonophysics, vol. 1, no. 274, pp. 1-4, 1997.
[30] J. A. Butterworth, R. E. Schulze, L. P. Simmonds, P. Moriarty, and F. Mugabe, ”Hydrological processes and water resources management in a dryland environment IV: Long-term groundwater level fluctuations due to variation in rainfall,” Hydrology and Earth System Sciences, vol. 3, no. 3, pp. 353-361, 1999.
[31] K. Weber and M. Stewart, ”A critical analysis of the cumulative rainfall departure concept,” Ground Water, vol. 42, no. 6/7, p. 935, 2004.
[32] J.-Y. Jiang, “Shallow S-wave velocity structure of Pingtung Plain, Taiwan derived from HVSR simulation”, Master dissertation, National Central University.
指導教授 王士榮(Shih-Jung Wang) 審核日期 2020-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明