博碩士論文 106626005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.207.238.169
姓名 陳觀印(Kuan-Yin Chen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 發展渦流相關法之潛熱與二氧化碳通量補遺技術
(Developing Gap Filling Techniques for Latent Heat and Carbon Fluxes Measured by the Eddy Covariance Method)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 潛熱、可感熱和碳通量是大氣和陸域生態系間重要的水氣、熱和碳交互作用,但往往因為儀器故障或觀測條件不佳而導致資料品質缺失,以渦流相關法計算的陸表通量資料,遺失率往往高達50-60%不等,通量資料大量遺失對於區域水文收支、能量收支和碳收支的長期計算會有極大的誤差。先前研究(陳奕穎,2012)已經利用主成分分析法和多元回歸式發展潛熱通量補遺方法,本研究使用類似的架構發展蓮華池通量觀測資料補遺方法,主要改進在加入能量閉合率和摩擦風速來預先篩選品質較好的通量資料以建立缺補模式,並使用主成分分析法解析影響通量資料變異之微氣象資料主成分,再將這些主成分與通量資料建立多元回歸關係式來建立通量缺補模式。
分析蓮華池長期通量資料在水文收支部分,即使是較乾燥的季節或年份,森林有蒸發散量並未有太大差異,仍可有效運用土壤水分。在能量平衡部分,渦流相關法所觀測的潛熱與可感熱在小時尺度約達可用能量的0.79-1.0,所發展之通量缺補技術在能量閉合度有不錯表現,在年尺度、乾季、溼季的Bowen Ratio分別為 0.87、1.19、0.64,在碳收支部分,透過資料補遺後的二氧化碳通量,發現於颱風事件時,颱風導致樹木或葉子掉落,使其光合作用的能力降低,而落葉被微生物分解產生二氧化碳,使得森林白天的碳匯能力下降。
摘要(英) Data gaps in flux measurements are continuous challenges in flux communities. Robust and consistent gap-filling techniques are essential to the integrated synthesis among different sites. In our previous studies (Chen et al., 2012), a gap-filling model for eddy covariance latent heat (LE) fluxes was developed by integrating the principal component analysis (PCA) and a nonlinear interpolation approach for resolving the multi-collinearity relationships between environmental variables measured by low frequencies instruments and LE fluxes estimated with high frequencies data. Several strategies, such as using a friction velocity as a threshold for data QC/QA or selecting different environmental variables for building the PCA model, have been tested to improve the skill of the PCA gap-filling model built. In this study, the range of Energy Closure Fraction (ECF) was proposed as an essential and effective threshold on building the PCA gap-filling model for EC fluxes. The range of ECF values between 0.5 and 1.5 was used as thresholds after conventional QC/QA procedures to select EC data. Also, temperature differences between canopy and atmosphere were used to replace the LAI, used in the previous study, as one of the environmental variables in view of resolving interactions between H fluxes and LE fluxes. After PCA gap-filling model, the results of energy balance could prove the PCA gap-filling model was successful.
In water budget part, it shows that the forest has strong water ability. The forest could effectively use soil water. It didn’t find the drought even when the precipitation is greatly reduced. In the carbon budget part, this study will discuss the carbon flux in the wet season. Through the complete carbon flux, it’s found that typhoon will cause to reduce the carbon sink capacity of the forest.
關鍵字(中) ★ 渦流相關法
★ 主成分分析法
★ 潛熱通量
★ 顯熱通量
★ 二氧化碳通量
★ 通量資料補遺
關鍵字(英) ★ eddy covariance
★ principal component analysis
★ latent heat flux
★ sensible heat flux
★ carbon dioxide
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
一、 緒論 1
1.1前言 1
1.2研究目的 2
二、 文獻回顧 4
2.1渦流相關法 4
2.2潛熱通量資料補遺 6
2.2.1日循環插補法(mean diurnal variation) 6
2.2.2查表法(Look up table) 7
2.3二氧化碳通量資料補遺 8
2.4主成分分析法 8
2.5多元回歸法 9
三、 實驗場址與儀器介紹 11
3.1實驗場址 11
3.2儀器架設 13
3.2.1高頻儀器系統 13
3.2.2低頻觀測系統 13
四、 研究方法 15
4.1渦流相關法 15
4.1.1概念與假設 15
4.1.1.1泰勒假設 15
4.1.1.2雷諾分解 15
4.1.2渦流相關法之資料缺失 16
4.1.2.1大氣條件之因素 17
4.1.2.2儀器測量之因素 17
4.1.2.3人為操作因素 18
4.2通量資料計算 20
4.2.1Flux Calculator 20
4.2.1.1剔除異常值 20
4.2.1.2座標軸旋轉 20
4.2.2通量計算步驟 22
4.3潛熱通量資料補遺方法 22
4.3.1微氣象資料 23
4.3.2標準化 23
4.3.3主成分分析法(Principle Component Analysis, PCA) 23
4.3.4多元回歸 24
4.3.5潛熱通量轉換 25
4.3.6能量閉合率(Energy Closure Fraction,ECF) 25
4.4可感熱通量資料補遺方法 26
4.5二氧化碳通量資料補遺方法 27
4.5.1微氣象資料 28
4.5.2資料分類 28
4.5.3主成分分析法與多元回歸 28
五、 結果與討論 30
5.1潛熱通量資料補遺 30
5.1.1以摩擦風速大小篩選資料 30
5.1.2 以能量閉合度篩選資料 31
5.1.3資料補遺結果 33
5.1.4計算蒸發散 46
5.2可感熱通量資料補遺與蓮華池各年能量平衡 47
5.2.1 Bowen Ratio 54
5.3二氧化碳通量資料補遺 55
5.4颱風二氧化碳通量之變化 64
六、 結論與建議 67
6.1結論 67
6.2建議 68
參考文獻 69
附錄A 潛熱通量資料補遺補充 77
附錄B 二氧化碳通量資料補遺補充 77
參考文獻 1. Alavi, N., Warland, J.S., Berg, A.A., Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach. Agricultural and Forest Meteorology, 141, 57-66, 2006.
2. Anderson, D.E., Verma, S.B., Rosenberg, N.J., Eddy correlation measurements of CO2, latent heat and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology, 29, 167-183, 1984.
3. Aubinet, M., Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem, Ecological Applications 18:1368-1378, 2008.
4. Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, Martin, P., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Gru nwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., Vesala, T., Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology, Advances in Ecological Research 30:113-175, 2000.
5. Aubinet, M., Chermanneb, B., Vandenhaute, M., Longdoz, B., Yernaux, M., Laitat, E., Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology, 108, 293-315, 2001.
6. Baldocchi, D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystem: past, present and future. Global Change Biology 9: 479-492, 2003.
7. Baldocchi, D., ‘Breathing’ of the Terrestrial Biosphere: Lessons Learned from a Global Network of Carbon Dioxide Flux Measurement Systems. Aust. J. Bot., 56, 1-26, 2008.
8. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., et al., FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull. Am. Meteorol. Soc., 82, 2415-2434, 2001.
9. Baldocchi, D., Meyers, T., 1998. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapour and trace gas fluxes over vegetation: a perspective. Agric. For. Meteorol. 90, 1–25, 1998.
10. Barr, A.G., Morgenstern, K., Black, T. A., McCaughey, J. H., Nesic, Z., Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux, Agricultural and Forest Meteorology, 140, 322-337,2006.
11. Berbigier, P., Bonnefond, J.M., Mellmann, P., CO2 and water vapour fluxes for 2 years obove Euroflux forest site. Agricultural and Forest Meteorology, 108, 183-197, 2001.
12. Brutsaert, W., Lnad-surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scales. Water Resource Research, 34, 10 2433-2442, 1998.
13. Cava, D., Contini, D., Donateo, A., Martano, P., Analysis of short-term closure of the surface energy balance above short vegetation. Agricultural and Forest Meteorology, 148, 82-93 ,2008.
14. Chen, Y.Y., Li, M.H., Effect of Coordinate Rotation on Estimating Surface Heat and Water Vapor Fluxes over Mountainous Terrain. The 6th AsiaFlux Workshop, Tayuan, Taiwan, 2007.
15. Chen, Y.Y., Li, M.H., Determining adequate averaging periods and reference coordinates for eddy covariance measurements of surface heat and water vapor fluxes over mountainous terrain. Terrestrial, Terr. Atmos. Ocean. Sci. 23, 685–701, 2012.
16. Chen, Y.Y.; Chu, C.R.; Li, M.H., A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example. J. Hydrol. 468–469, 101–110, 2012.
17. Coppin, P.A., Taylor, K.J., A three component sonic anemometer/thermometer system for general micrometeorological research. Boundary-Layer Meteorology, 27, 27-42, 1983.
18. Dabberdt, W. F., Lenschow, D. H., Horst, T. W. Zimmerman, P. R.,Oncley, S. P., Delany, A. C., Atmosphere-surface exchange measurements, Science, 260, 1472-1480, 1933.
19. Falge, E., Baldocchi, D.D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., et al., Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69, 2001.
20. Finnigan, J., An introduction to flux measurements in difficult conditions, Ecological Applications 18:1340-1350, 2008.
21. Foken, T., Wichura. B., ‘‘ Tools for quality assessment of surface-base flux measurement ’’, Agricultural and Forest Meteorology,78,83-105,1996.
22. Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B., Munger, W., Post-field data quality control. Pages 181-208 in: Lee, X., Massman, W., Law, B., Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic, Dordrecht, 2004.
23. Foken, T., Mauder, M., Liebethal, C., Wimmer, F., Beyrich, F., Leps, J.P., Raasch, S., DeBruin, H., Meijninger, W., Bange, J., Energy balance closure for the LITFASS-2003 experiment. Theoretical and Applied Climatology, 101, 149-160, 2010.
24. Guo, X., Zhang, H., Kang, L., Du, J., Li, W., Zhu, Y., Quality control and flux gap filling strategy for Bowen ratio method: revisiting the Priestley-Taylor evaporation model. Environ. Fluid Mech., 7(5), 421-437, 2007.
25. Gurmessa, T., Bárdossy, A., A principal component regression approach to simulate the bed-evolution of reservoirs. Journal of Hydrology, 368(1-4), 30-41, 2009.
26. Mahrt, L., Stratified Atmospheric Boundary Layers, Boundary-Layer Meteorology 90:375-396, 1999.
27. Massman, W. J., Lee, X., Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges, Agricltural and Forest Meteology 113:121-144, 2002.
28. Oncley, S. P., Frieche, C. A., Larue, J. C., Businger, J. A., Itsweire, E. C., Chang, S. S., ‘‘ Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions ’’ J.Atmos.Sci., 53 1029-1044, 1996,
29. King, H. B., ‘‘ Genesis and classification of three forest doil on vental Taiwan ’’, National Institute for Compilation and Translation, p.p.175, 1993.
30. Leuning, R. A. Y., Judd, M. J., The relative merits of open- and closed-path analysis for measurement of eddy fluxes, Global Change Biology 2:241-253, 1996.
31. Papale, D., Reichstein, M., Aubinet, M., Aubinet, E., Canfora, C., Bernhofer, W., Kutsch, B., Longdoz, S., Rambal, R., Valentini, T., Vesala, T., Yakir., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences 3:571-583, 2006.
32. Penman, H.L., Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, A193, 120-145,1948.
33. Reynolds, O. On the dynamical theory of Incompressible viscous fluids and the determination of the criterion, Philosophical Transactions of Royal Society of London, 186:123-164, 1895.
34. Schmidt, A., Wrzesinsky, T., Klemm, O., Gap Filling and Quality Assessment of CO2 and Water Vapour Fluxes above an Urban Area with Radial Basis Function Neural Networks. Boundary-Layer Meteorol., 126, 389-413. DOI 10.1007/s10546-007-9249-7, 2008.
35. Sellers P. J., Dickinson R. E., Randall D. A., Betts A. K., Hall F. G., Berry J. A., Collatz G. J., Denning A. S., Mooney H. A., Nobre C. A., Sato N., Field C. B., Henderson-Sellers A., ‘‘Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere’’, Science 275 (5299), 502-509,1997.
36. Stauch, V.J., Jarvis, A.J., A semi-parametric gapfilling model for eddy covariance CO2 flux time series data. Global Change Biol., 12, 1707-1716, 2006.
37. Stull, R. B., An introduction to boundary layer meteorology. Kluwer academic Dordrecht, 1988.
38. Swinbank, W.C., The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology, 8, 135-145, 1951.
39. Tanaka, H., Hiyama, T., Kobayashi, N., Yabuki, H., Ishii, Y., Desyatkin, RV., Maximov, T.C., Ohta, T., Energy balance and its closure over a young larch forest in eastern Siberia, Agricultural and Forest Meteorology, 148 (12), 1954-1967, 2008.
40. Taubenheim, J., ‘‘ Statistische Auswertung geophysikalischer and meteorologischer Daten ’’, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 386, 1968.
41. Taylor, G. I., The Spectrum of Turbulence. Proceedings of the Royal Society of Landon. Series A, Matheatical and physical Sciences 164:479-490,1938.
42. Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H., Starks, P.J., Wesely, M.L., Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103, 279-300, 2000.
43. Valentini, R., Scarascia-Mugnozza, G.E., De Angelis, P., Bimbi, R., An experimental test of the eddy correlation technique over a Mediterranean macchia canopy, Plant, Cell and Environment, 14, 987-994, 1991.
44. Van Gorsel, E., Leuning, E., Cleugh, H. A., Keith, H., Suni, T., Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus B, 59:397-403, 1997.
45. Verma, S.B., Baldocchi, D.D., Anderson, D.E., Matt, D.R., Clement, R.J., Eddy fluxes of CO2, water vapor and sensible heat over a deciduous forest, Boundary-Layer Meteorology, 36, 71-91, 1986.
46. Verma, S.B., Kim, J., Clement, R., Carbon dioxide, water vapor and sensible heat fluxes over a tallgrass prairie, Boundary-Layer Meteorology, 46, 53-67, 1989.
47. Vickers, D., Mahrt, L., Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology 14:512-526, 1997.
48. Vourlitis, G.L., Priante, N., Hayashi, M.M.S., Nogueira, J.D., Caseiro, F.T., Campelo, J.H., Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res., 38, doi:10.1029/2000WR000122, 2002.
49. Wesely, M. L., Eddy correlation measurement in the atmospheric surface layer over agricultural crops. Ph.D. Thesis, University of Wisconsin, 1970.
50. Wilson, K.B., Baldocchi, D.D., Aubient, M., Berbigier, P., Bernhofer, C., Dolman, H., et al., Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res., 38:1294. doi:10.1029/2001WR000989, 2002.
51. Xing, Z., Bourque, C.P.-A., Meng, F.-R., Cox, R.M., Swift, D.E., Zha, T., Chow, L., A process-based model designed for filling of large data gaps in tower-based measurements of net ecosystem productivity, Ecol. Model., 213 (2), 165-179, 2008.
52. Yunusa, I.A.M., Walker, R.R., Lu, P., Evapotranspiration components from energy balance, sapflow and microlysimeter techniques for an irrigated vineyard in inland Australia. Agriculture and Forest Meteorology, 172, 93-107,2004.
53. 邱奕霖,「地表過程蒸發散之觀測與分析」,國立中央大學水文與海洋科學研究所碩士論文,2005。
54. 陳奕穎,「發展遙測資料反演可感熱與潛熱通量之研究」,國立中央大學水文與海洋科學研究所碩士論文,2004。
55. 陳奕穎,「應用渦流相關法探討地表水氣通量與熱通量之特徵:以亞熱帶季節性常綠闊葉林為例」,國立中央大學水文與海洋科學研究所博士論文,2012。
56. 吳致甄,「棲蘭山通量站二氧化碳通量資料補遺方法之比較」,國立東華大學自然資源管理研究所碩士論文,2009。
57. 褚侯森,「複雜地形中的通量量測-以棲蘭山台灣扁柏森林樣區為例」,國立東華大學自然資源管理研究所碩士論文,2008。
58. 袁一夫,「應用通量變異法與渦流相關法推估地表通量」,國立中央大學水文與海洋科學研究所碩士論文,2008。
59. 孫曉敏、朱治林、許金萍、袁國富、周豔蓮、張仁華,「渦流相關測定中平均週期參數的確定及其影響分析」,中國科學、D輯、地球科學、2004、34增刊(Ⅱ),30-36頁。
60. 黃正泉,「蓮華池天然闊葉林及杉木人工林試驗集水區水文與水質特性之探討」,國立台灣大學森林環境暨資源學研究所博士論文,2010。
61. 黃哲偉,「均勻實驗設計與多元回歸之函數建模準確度研究」,國立屏東大學資訊科學系碩士班碩士論文,2016。
62. 柏洛賓,「利用多元回歸模型預測鐵礦石價格」,國立台灣大學企業管理碩士專班碩士論文,2010。
63. 林延軒,「以渦流協變性系統進行全年度甲烷及二氧化碳通量觀測之研究-以台南北門鹽田為例」,國立中興大學環境工程學系所碩士論文,2017。
64. 林卷樺,「以紊流協變系統觀測二氧化碳/甲烷通量之研究-以台南北門鹽田為例」,國立中興大學環境工程學系所碩士論文,2016。
65. 謝明軒,「於春夏季使用渦流協變性系統進行二氧化碳及甲烷通量觀測之研究-以台南北門鹽田為例」,國立中興大學環境工程學系所碩士論文,2016。
66. 張家寅,「基於主成分分析法開發適用於氣體感測器陣列之飄移補償演算法」,國立清華大學電機工程學系碩士論文,2015。
67. 莊尚儒,「基於強大的主成分分析法於權重最小能量限制法之目標檢測」,國立雲林科技大學資訊工程系碩士論文,2017。
指導教授 李明旭(Ming-Hsu Li) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明