博碩士論文 106683005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.19.56.45
姓名 邱奕中(Yi-Chung Chiu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析
(Lessons Learned from IDEASSat: Design, Testing, On Orbit Operations, and Anomaly Analysis of a University CubeSat)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試★ 中央大學地面系統設計、整測與驗證
★ 太空飛行器電力次系統硬體迴路測試平台之建立★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證
★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型★ 飛鼠號立方衛星之飛行軟體及韌體設計
★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) IDEASSat(Ionospheric Dynamics and Attitude Subsystem Satellite) / INSPIRESat-2,中文命名為飛鼠號,是由國立中央大學所開發的立方衛星,用於進行電離層電漿參數的量測。該計畫任務科學目標為觀測電離層不規則體,工程項目目標為驗證自製衛星結構是否能承受太空環境的考驗。此太空計畫主要由學生負責設計及運行,為此計畫賦予了教育意義。
IDEASSat計劃於2017年4月14日正式啟動,並於2021年1月24日成功發射到近地軌道(Low Earth Orbit, LEO),並且在執行任務的過程中成功展現出姿態上的穩定控制、衛星的遙測通訊,以及自主操作的飛行軟件和地面系統。軌道運行22天後,衛星發生了1.5個月的通信中斷。與衛星通信恢復兩天后,地面站再次與衛星失去聯繫。 通過對兩天恢復期間的下行飛行數據的分析,可以高度確定停電異常的原因和機制。本論文涵蓋了IDEASSat在軌性能的集成、測試和分析,並且記錄整個任務生命週期所得到的經驗及教訓,以提供後續相關任務參考。
摘要(英) IDEASSat (Ionospheric Dynamics and Attitude Subsystem Satellite) / INSPIRESat-2 is a 3U CubeSat developed by National Central University (NCU) for the measurement of ionospheric plasma parameters, and is also the first spacecraft to be developed by NCU. The primary science mission objective was plasma irregularity observation and the engineering objective was to verify the ability of the self-made satellite system to survive and function in the space environment. This project is mainly designed and operated by students, which also provided this project with educational significance.
IDEASSat program started in April 14, 2017 and was successfully launched into Low Earth Orbit (LEO) on January 24, 2021, and successfully demonstrated attitude determination and control, satellite telemetry communications, and autonomously operating flight software and ground systems during the mission. After 22 days of on orbit operations, the satellite experienced a communication interruption for 1.5 months. After two days of communication recovery with the satellite, the ground station lost contact with the satellite again. The cause and mechanism of the blackout anomaly was determined to a high level of confidence from analysis of the downlinked flight data during the two day recovery period. This dissertation covers the integration, testing, and analysis of on-orbit performance of IDEASSat, and will record the lessons learned during the mission life cycle to provide reference for subsequent related missions.
關鍵字(中) ★ 立方衛星
★ 飛鼠號
關鍵字(英) ★ CubeSat
★ IDEASSat
★ Lessons learned
論文目次 Table of Contents
摘要i
Abstract ii
致謝iii
Table of Contents iv
Figure List vi
Table List viii
1 Introduction 1
1-1 Space Mission System Architecture 1
1-2 CubeSat 2
1-3 Satellite Subsystems 7
1-3-1 Orbital Mechanics (ORB) 7
1-3-2 Propulsion ( 8
1-3-3 Attitude Determination and Control System (ADCS) 8
1-3-4 Electrical Power System (EPS) 9
1-3-5 Thermal Control System (TCS) 9
1-3-6 Command and Data Handling (CDH) 10
1-3-7 Telecommunication (COMM) 10
1-3-8 Structure and Mechanisms (STR) 12
2 IDEASSat Mission 13
3 IDEASSat: Design and Architecture 15
3-1 Spacecraft 15
3-2 Payload: Compact Ionospheric Probe (CIP) 21
3-3 Operating Modes 23
3-4 NCU Ground Station 27
3-4-1 S-band Station 28
3-4-2 UHF / VHF Ground Station 29
3-5 Power budget 32
3-6 Link budget 33
3-7 Mass budget 37
3-8 Radiation environment 38
4 Integration and Test 39
4-1 Flatsat 39
4-2 End to End Test 40
4-3 Vibration Test 42
4-4 Thermal Vacuum Cycling Test (TVCT) 47
4-5 Delivery and Launch Integration 50
5 Flight Data and Anomaly Analysis 53
5-1 Single Event Upset (SEU) 55
5-2 UHF: Reboot Count Anomaly 57
5-3 OBC: Command Reject Anomaly (random noise interference) 58
5-4 STR: Incompletely Deployed Solar Panels 60
5-5 TCS: Temperature Performance 64
5-6 ADCS: Reboot and State Recovery 67
5-7 EPS: Single Event Latch-up (SEL) 69
6 Conclusions and Lessons Learned 74
References 79
Appendix A Vibration test spectrum 83
參考文獻 [1] Wilfried Ley, Klaus Wittmann, Willi Hallmann, Handbook of Space Technology, John Wiley & Sons, Ltd, February 2011.
[2] C. D. Brown, Elements of Spacecraft Design, American Institute of Aeronautics and Astroautics, January 2003.
[3] Bryce tech, “Smallsats by Numbers 2022,” Bryce tech, February 2022.
[4] G. Konecny, "Small satellites–A tool for Earth observation?," in XXth ISPRS Congress, pp 580-582, Istanbul, Turkey, July 2004.
[5] Cal Poly, “CubeSat Design Soecification Rev. 14.1,” Cal Poly, San Luis Obispo, CA, February 2022.
[6] John F. Kennedy Space Center, Launch Services Program: Program Level Dispenser and CubeSat Requirements Document Rev. B, National Aeronautics and Space Administration, Jaunary 2014.
[7] 楊世銘, “微衛星系統工程,” 科儀新知, 編號 23:1=123 2001.08[民90.08], pp. 41-48頁, 2001年8月.
[8] Jet Propulsion Laboratory (JPL), “CubeSats and SmallSats/Missions,” Jet Propulsion Laboratory California Institute of Technology, [線上]. Available: https://www.jpl.nasa.gov/missions?mission_type=CubeSat%2FSmallSat.
[9] Shanessa Jackson, “CubeSat Launch Initiative,” National Aeronautics and Space Administration (NASA), 24 May 2022. [線上]. Available: https://www.nasa.gov/directorates/heo/home/CubeSats_initiative.
[10] Pumpkin, Inc, “CubeSat Kit,” Pumpkin, Inc, February 2005. [線上]. Available: http://www.cubesatkit.com/.
[11] Jet Propulsion Laboratory (JPL), “Mars Cube One (MarCO),” Jet Propulsion Laboratory, National Aeronautics and Space Administration, [線上]. Available: https://www.jpl.nasa.gov/missions/mars-cube-one-marco.
[12] NASA Goddard Space Flight Center, “General Environment Verification Standard (GEVS) For GSFC Flight Programs and Projects,” 2019.
[13] Mary R. Coan et al., “Internal NASA Study: NASA’s Protoflight Research Initiative,” 2015.
[14] European Space Agency, “Applications: Satellite frequency bands,” European Space Agency, [線上]. Available: https://reurl.cc/11bGlQ.
[15] Small Spacecraft System Virtual Institute, State of the Art of Small Spacecraft Technology, Moffett Field, California: Ames Research Center, 2020.
[16] R. A. Akmaev et al., “Midnight temperature maximum (MTM) in Whole Atmosphere Model (WAM) simulations,” Geophysical Research Letters, Vol. 36, L07108, April 2009.
[17] J. C. Mankins, “TECHNOLOGY READINESS LEVELS (A White Paper),” Advanced Concepts Office, Office of Space Access and Technology, NASA, April 6, 1995.
[18] James P. Mason et al., “Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat,” Journal of Spacecraft and Rockets Vol. 53, Issue 2, pp. 328-339, 10 March 2016.
[19] 蔡林融, “飛鼠號立方衛星電力次系統設計,” 國立中央大學, 碩士論文, 民國108年.
[20] European space component coordination, “Single event effects test method and Guidelines - ESCC Basic Specification,” European space component coordination, 2014.
[21] U.S. Government, “Orbital Debris Mitigation Standard Practices,” U.S. Government, November 2019.
[22] Zai-Wun Lin, et al, “Advanced Ionospheric Probe scientific mission onboard FORMOSAT-5 satellite,” Terr. Atmos. Ocean. Sci., pp. pp. 99 - 110, April 2017.
[23] Comtech Telecommunications Corp., “Low/Medium Earth Orbit Satellite Tracking Antenna Systems,” [線上]. Available: https://zmmcbb.a2cdn1.secureserver.net/wp-content/uploads/2022/03/21_XY-data-sheet.pdf?time=1671138391.
[24] TELEDYNE PARADISE DATACOM, “QubeFlex CubeSat/SmallSat/LEO Satellite Transceiver/Modem,” 2022.
[25] 鄭凱倫, “中央大學地面系統設計、整測與驗證,” 國立中央大學, 碩士論文, 民國111年.
[26] 羅偉豪, “支援飛鼠號立方衛星之S頻段地面站評估及整測,” 國立中央大學, 民國109年.
[27] Alexandru Csete, “Gpredict,” 19 October 2020. [線上]. Available: http://gpredict.oz9aec.net/index.php.
[28] GNU Radio project, “GNU Radio,” 2022. [線上]. Available: https://www.gnuradio.org/.
[29] J. Nicolas, "SatNOGS: Towards a Modern, Crowd Sourced and Open Network of Ground Stations," in Proceedings of the GNU Radio Conference, 2021.
[30] International Telecommunication Union, “ ITU-R P.372-14 RADIO NOISE,” 2019.
[31] International Telecommunication Union, “ITU-R P.676-12 ATTENUATION BY ATMOSPHERIC GASES,” 2019.
[32] International Telecommunication Union, “REPORT ITU-R P.2097, Transionospheric radio propagation, The Global Ionospheric Scintillation Model (GISM),” 2007.
[33] AAC Clyde Space, “Communications: TRX-U,” www.aac-clyde.space, 2022.
[34] AAC Clyde Space, “Communications: PULSAR-STX,” www.aac-clyde.space, 2021.
[35] National Instruments Corporation., USRP-2900 specifications, 2023.
[36] 劉心慈, “飛鼠號立方衛星之結構次系統,” 國立中央大學, 碩士論文, 民國109年.
[37] Agi STK, “SEET: SPACE ENVIRONMENT AND EFFECTS TOOL FOR AGI’S SYSTEMS TOOL KIT (STK),” Agi STK.
[38] Marc Vila Fernández, Gaëtan Kerschen, “Mission analysis of QB50, a nanosatellite intended to study the lower thermosphere,” University of Liège Faculty of Applied Sciences, 2011.
[39] J. P. Monteiro, R. M. Rocha, A. Silva, R. Afonso, and N. Ramos, “Integration and Verification Approach of ISTSat-1 CubeSat,” Aerospace, vol. 6, no. 12, p. 131, December 2019.
[40] William A. Beech, Douglas E. Nielsen, Jack Taylor, “AX.25 Link Access Protocol for Amateur Packet Radio,” Tucson Amateur Packet Radio Corporation, July, 1998.
[41] SpaceX, "Rideshare Payload User′s Guide," June 2022. [Online].
[42] ISISpace, "TESTPOD," 2022. [Online]. Available: https://www.isispace.nl/product/testpod/.
[43] Roy Stevenson Soler Chisabas et al., "Method for CubeSat Thermal-Vacuum Cycling Test Specification," in International Conference on Environmental Systems, Charleston, South Carolina, 2017.
[44] Mark J. Welch, “Introduction to Thermal Desktop,” C&R Technologies.
[45] Yi-Chung Chiu. et al, “Lessons Learned from IDEASSat: Design, Testing, on Orbit Operations, and Anomaly Analysis of a First University CubeSat Intended for Ionospheric Science,” Aerospace, 18 February 2022.
[46] Microsemi, “DG0388 - Demo Guide: SmartFusion2 SoC FPGA Error Detection and Correction of eSRAM Memory,” Microsemi, 2021.
[47] Microsemi, “SmartFusion2 MSS - Single Error Correct / Double Error Detect (SECDED) Configuration,” Microsemi, 2012.
[48] National Aeronautics and Space Administration, "Payload Test Requirements," NASA Technical Standard, 6 June 2018.
[49] 戴子雅, “Flight Software and Firmware Design of IDEASSat/INSPIRESat-2,” 國立中央大學, 碩士論文, 民國110年.
[50] Sittinat Denduonghatai, “Design, analysis, and tests of locked hinges for two-stage deployable solar panels onboard small satellites,” National Central University, Master Thesis, June, 2021.
[51] S. R. Hirshorn, NASA systems engineering handbook, National Aeronautics and Space Administration, 2007.
[52] SAE International, “Standard Practice for Human Systems Integration. SAE6906.,” 於 SAE International, Warrendale, PA, 2019.
指導教授 張起維(Loren C. Chang) 審核日期 2023-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明