博碩士論文 106821006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.119.160.154
姓名 王懷元(Huai-Yuan Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 引發體蛋白PriA和DnaD在DNA複製重啟之結構與功能分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在DNA複製時,總是會遇到一些DNA受損或DNA結合蛋白質,他們可能會使複製體 (replisome) 離開複制叉DNA並形成廢棄的複制叉DNA。在bacillus subtilis中,它們演化出一種稱為“DNA複製重啟”的途徑來恢復 (restore) DNA複製。DNA複制的重啟是由PriA、DnaD和DnaB來完成。首先PriA會去辨識這個廢棄的複制叉DNA並招來DnaD和DnaB來組裝成一個引發體 (primosome) 。一旦引發體組裝好了,它就會將複製體裝載到DNA上並重新啟動DNA複製。然而,這些引發體蛋白質在DNA複製重啟中的分子機制仍舊不清楚。為更加了解其生化特性和引發體組裝活性,我們表達了從Geobacillus stearothermophilus和Streptococcus pneumoniae中克隆priA和dnaD基因並純化了該蛋白質。我們使用螢光極化 (fluorescence polarization) 來檢測蛋白質和蛋白質以及蛋白質和DNA的交互作用。結果表明,PriA對DnaD具有高親和力,兩種蛋白質均具有DNA結合能力。為了解釋複製重啟的機理模型並闡明它們的調節作用,我們試圖通過X射線晶體學研究結構和功能之間的關係,並通過多波長異常衍射解出2.5Å的DnaD的晶體結構。然而,我們沒有觀察到DnaD的 C端區域,可能是因為其撓動的特性。這些蛋白質結構和生化特性的初步結果使我們更進一步了解引發體組裝機制。
摘要(英) During the DNA replication elongation, this process is always encountering some problems that might eject the replication complex and form an abandoned replication fork DNA such as DNA damage. In bacillus subtilis, they evolve a pathway call “DNA replication restart” to resume DNA replication. DNA replication restart is done with several proteins PriA, DnaD and DnaB. First, PriA can recognize this abandoned replication fork DNA and recruit others primosomal proteins DnaD and DnaB to assemble a primosome. Once primosome is assembled, it loads a replisome onto DNA and restarts DNA replication. However, the molecular machinery of these primosomal proteins in DNA replication restart is still unclear. To understand the biochemical property and primosome assembly activity of these proteins, we expressed priA and dnaD genes which are isolated from Geobacillus stearothermophilus and Streptococcus pneumoniae and purified these proteins. We used fluorescence polarization assay to identify the protein-protein and protein-DNA interaction. The results showed that PriA carried a high affinity to DnaD and both proteins have DNA binding ability. To explain a mechanistic model of replication restart and elucidate their regulatory roles, we are trying to study the relationship between structure and function by X-ray crystallography and solved the crystal structure of DnaD at 2.5 Å resolutions by multi-wavelength anomalous diffraction. Unfortunately, we did not observe a continuous density of DnaD C-terminal region because of its flexibility. All in all, these preliminary results of initial protein structure and biochemical property give us a positive feedback for further structure determination and discussion of DNA replication restart.
關鍵字(中) ★ 蛋白質結構
★ 引發體
關鍵字(英) ★ Protein structure
★ Primosome
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
一、 緒論 1
1-1 細菌中DNA複製重啟 (replication restart) 1
1-2 PriA 2
1-3 DnaD 3
1-4 嗜熱脂肪芽孢桿菌 (Geobacillus stearothermophilus) 4
1-5 肺炎鏈球菌 (Streptococcus pneumoniae) 4
二、 材料與實驗方法 5
2-1 蛋白質序列分析 5
2-1-1 多重蛋白質序列之比對 (protein sequences alignment) 5
2-2 質體建構與蛋白質表現 5
2-2-1 GstPriA 5
2-2-2 SpPriA和SNAP-SpPriA 6
2-2-3 SpDnaD、SpDnaD N端1-118和SpDnaD C端119-225 7
2-2-4 甲硒氨酸修飾 (Se-Met labelling) 之SpDnaD 7
2-3 蛋白質純化 8
2-4 螢光極化 (fluorescence polarization) 10
2-4-1 SNAP-SpPriA與SpDnaD交互作用 10
2-4-2 SpDnaD和DNA之交互作用 10
2-5 SpPriA/SpDnaD complex的size exclusion chromatography分析 11
2-6 SpPriA/SpDnaD complex的化學交聯 (cross-linking) 分析 11
2-7 蛋白質結晶 12
2-7-1 高通量篩選 12
2-7-2 GstPriA-DNA complex結晶 12
2-7-3 SpPriA-DNA complex結晶 12
2-7-4 SpDnaD與Se-Met labelling SpDnaD晶體 13
2-8 SpDnaD晶體繞射圖譜資料收集 13
三、 實驗結果 15
3-1 蛋白質序列分析 15
3-1-1 PriA 15
3-1-2 DnaD 17
3-2 蛋白質表現與純化 17
3-2-1 GstPriA 18
3-2-2 SpPriA和SNAP-SpPriA 19
3-2-3 SpDnaD、SpDnaD N端、SpDnaD C端和Se-Met SpDnaD 20
3-3 SpDnaD和SpPriA之間的交互作用 21
3-4 SpPriA和SpDnaD N端或SpDnaD C端的交互作用 21
3-5 SpPriA/SpDnaD complex的size exclusion chromatography分析 22
3-6 SpPriA/SpDnaD complex的化學交聯分析 22
3-7 SpDnaD和DNA的交互作用 23
3-8 SpDnaD與Se-Met labelling SpDnaD晶體 23
3-9 SpDnaD晶體繞射圖譜資料收集 24
3-10 SpDnaD之整體結構 25
3-11 SpDnaD結構之等電性分析 25
3-12 SpDnaD之演化保守性 26
3-13 SpDnaD結構之tetramer分析 26
四、 討論 28
五、 未來研究方向 31
5-1 GstPriA-DNA複合體結晶 31
5-2 SpPriA-DNA複合體結晶 31
5-3 SpDnaD-DNA複合體結晶 32
參考文獻 33
圖 41
表 80
附錄 83
參考文獻 1. D. E. Koshland, Jr., Special essay. The seven pillars of life. Science 295, 2215-2216 (2002).
2. N. Y. Yao, M. O′Donnell, SnapShot: The replisome. Cell 141, 1088, 1088 e1081 (2010).
3. P. McGlynn, R. G. Lloyd, Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3, 859-870 (2002).
4. M. K. Gupta et al., Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proc Natl Acad Sci U S A 110, 7252-7257 (2013).
5. R. S. Washburn, M. E. Gottesman, Transcription termination maintains chromosome integrity. Proceedings of the National Academy of Sciences 108, 792-797 (2011).
6. S. M. Mangiameli, C. N. Merrikh, P. A. Wiggins, H. Merrikh, Transcription leads to pervasive replisome instability in bacteria. Elife 6 (2017).
7. H. Merrikh, Y. Zhang, A. D. Grossman, J. D. Wang, Replication-transcription conflicts in bacteria. Nat Rev Microbiol 10, 449-458 (2012).
8. R. Schekman, A. Weiner, A. Kornberg, Multienzyme systems of DNA replication. Science 186, 987-993 (1974).
9. R. Schekman, J. H. Weiner, A. Weiner, A. Kornberg, Ten proteins required for conversion of phiX174 single-stranded DNA to duplex form in vitro. Resolution and reconstitution. J Biol Chem 250, 5859-5865 (1975).
10. S. Wickner, J. Hurwitz, Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. Proc Natl Acad Sci U S A 72, 3342-3346 (1975).
11. S. Wickner, J. J. P. o. t. N. A. o. S. Hurwitz, Conversion of ϕX174 viral DNA to double-stranded form by purified Escherichia coli proteins. Proc Natl Acad Sci U S A 71, 4120-4124 (1974).
12. C. Bruand, S. D. Ehrlich, L. Janniere, Primosome assembly site in Bacillus subtilis. EMBO J 14, 2642-2650 (1995).
13. S. Marsin, S. McGovern, S. D. Ehrlich, C. Bruand, P. Polard, Early steps of Bacillus subtilis primosome assembly. J Biol Chem 276, 45818-45825 (2001).
14. J. M. Jones, H. Nakai, The phiX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition. EMBO J 16, 6886-6895 (1997).
15. K. J. Marians, Prokaryotic DNA replication. Annu Rev Biochem 61, 673-719 (1992).
16. R. B. Wickner, M. Wright, S. Wickner, J. J. P. o. t. N. A. o. S. Hurwitz, Conversion of ϕX174 and fd Single-Stranded DNA to Replicative Forms in Extracts of Escherichia coli. Proc Natl Acad Sci U S A 69, 3233-3237 (1972).
17. E. H. Lee, A. Kornberg, Replication Deficiencies in Pria Mutants of Escherichia-Coli Lacking the Primosomal Replication N′-Protein. Proc Natl Acad Sci U S A 88, 3029-3032 (1991).
18. T. Kogoma, G. W. Cadwell, K. G. Barnard, T. Asai, The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. Journal of Bacteriology 178, 1258-1264 (1996).
19. J. Shlomai, A. Kornberg, A prepriming DNA replication enzyme of Escherichia coli. II. Actions of protein n′: a sequence-specific, DNA-dependent ATPase. J Biol Chem 255, 6794-6798 (1980).
20. J. S. Minden, K. J. Marians, Replication of pBR322 DNA in vitro with purified proteins. Requirement for topoisomerase I in the maintenance of template specificity. J Biol Chem 260, 9316-9325 (1985).
21. C. Bruand, M. Farache, S. McGovern, S. D. Ehrlich, P. Polard, DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol Microbiol 42, 245-255 (2001).
22. P. Nurse, K. H. Zavitz, K. J. Marians, Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol 173, 6686-6693 (1991).
23. H. Masai, T. Asai, Y. Kubota, K. Arai, T. Kogoma, Escherichia-Coli Pria Protein Is Essential for Inducible and Constitutive Stable DNA-Replication. EMBO J 13, 5338-5345 (1994).
24. J. K. Eykelenboom, J. K. Blackwood, E. Okely, D. R. Leach, SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol Cell 29, 644-651 (2008).
25. T. R. Meddows, A. P. Savory, R. G. Lloyd, RecG helicase promotes DNA double-strand break repair. Mol Microbiol 52, 119-132 (2004).
26. I. Ivancic-Bacce, I. Vlasic, G. Cogelja-Cajo, K. Brcic-Kostic, E. Salaj-Smic, Roles of PriA protein and double-strand DNA break repair functions in UV-induced restriction alleviation in Escherichia coli. Genetics 174, 2137-2149 (2006).
27. S. Rangarajan, R. Woodgate, M. F. Goodman, Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 43, 617-628 (2002).
28. P. Polard et al., Restart of DNA replication in Gram-positive bacteria: functional characterisation of the Bacillus subtilis PriA initiator. Nucleic Acids Res 30, 1593-1605 (2002).
29. B. Bhattacharyya et al., Structural mechanisms of PriA-mediated DNA replication restart. Proc Natl Acad Sci U S A 111, 1373-1378 (2014).
30. T. A. Windgassen, M. Leroux, K. A. Satyshur, S. J. Sandler, J. L. Keck, Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proc Natl Acad Sci U S A 115, E9075-E9084 (2018).
31. T. Hoshino, T. McKenzie, S. Schmidt, T. Tanaka, N. Sueoka, Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication initiation and membrane attachment. Proc Natl Acad Sci U S A 84, 653-657 (1987).
32. F. Y. Marston et al., When simple sequence comparison fails: the cryptic case of the shared domains of the bacterial replication initiation proteins DnaB and DnaD. Nucleic Acids Res 38, 6930-6942 (2010).
33. S. Schneider, W. Zhang, P. Soultanas, M. Paoli, Structure of the N-terminal oligomerization domain of DnaD reveals a unique tetramerization motif and provides insights into scaffold formation. J Mol Biol 376, 1237-1250 (2008).
34. C. Y. Huang, Y. W. Chang, W. T. Chen, Crystal structure of the N-terminal domain of Geobacillus kaustophilus HTA426 DnaD protein. Biochem Biophys Res Commun 375, 220-224 (2008).
35. W. Zhang et al., Single-molecule atomic force spectroscopy reveals that DnaD forms scaffolds and enhances duplex melting. J Mol Biol 377, 706-714 (2008).
36. M. J. Carneiro et al., The DNA-remodelling activity of DnaD is the sum of oligomerization and DNA-binding activities on separate domains. Mol Microbiol 60, 917-924 (2006).
37. C. Bruand et al., Functional interplay between the Bacillus subtilis DnaD and DnaB proteins essential for initiation and re-initiation of DNA replication. Mol Microbiol 55, 1138-1150 (2005).
38. P. Donk, A highly resistant thermophilic organism. Journal of bacteriology 5, 373 (1920).
39. A. F. Voter et al., A high-throughput screening strategy to identify inhibitors of ssb protein–protein interactions in an academic screening facility. SLAS DISCOVERY: Advancing Life Sciences R&D 23, 94-101 (2018).
40. M. A. Larkin et al., Clustal W and Clustal X version 2.0. bioinformatics 23, 2947-2948 (2007).
41. A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, G. J. Barton, Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191 (2009).
42. J. Braman, C. Papworth, A. Greener, "Site-directed mutagenesis using double-stranded plasmid DNA templates" in In vitro mutagenesis protocols. (Springer, 1996), pp. 31-44.
43. J. M. Walker, The proteomics protocols handbook (Springer, 2005).
44. Z. Otwinowski, W. Minor, "[20] Processing of X-ray diffraction data collected in oscillation mode" in Methods in enzymology. (Elsevier, 1997), vol. 276, pp. 307-326.
45. P. D. Adams et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography 66, 213-221 (2010).
46. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography 66, 486-501 (2010).
47. T. Mizukoshi, T. Tanaka, K. Arai, D. Kohda, H. Masai, A critical role of the 3′ terminus of nascent DNA chains in recognition of stalled replication forks. J Biol Chem 278, 42234-42239 (2003).
48. K. Sasaki et al., Structural basis of the 3′-end recognition of a leading strand in stalled replication forks by PriA. EMBO J 26, 2584-2593 (2007).
49. K. Sasaki et al., Crystallization and preliminary crystallographic analysis of the N-terminal domain of PriA from Escherichia coli. Biochim Biophys Acta 1764, 157-160 (2006).
50. A. K. Byrd, K. D. Raney, Superfamily 2 helicases. Front Biosci (Landmark Ed) 17, 2070-2088 (2012).
51. A. M. Pyle, Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317-336 (2008).
52. M. R. Singleton, M. S. Dillingham, D. B. Wigley, Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76, 23-50 (2007).
53. K. H. Zavitz, K. J. Marians, Helicase-deficient cysteine to glycine substitution mutants of Escherichia coli replication protein PriA retain single-stranded DNA-dependent ATPase activity. Zn2+ stimulation of mutant PriA helicase and primosome assembly activities. J Biol Chem 268, 4337-4346 (1993).
54. Y. H. Huang, H. H. Guan, C. J. Chen, C. Y. Huang, Staphylococcus aureus single-stranded DNA-binding protein SsbA can bind but cannot stimulate PriA helicase. PLoS One 12, e0182060 (2017).
55. G. S. Briggs, W. K. Smits, P. Soultanas, Chromosomal replication initiation machinery of low-G+C-content Firmicutes. J Bacteriol 194, 5162-5170 (2012).
56. W. J. Checovich, R. E. Bolger, T. Burke, Fluorescence polarization--a new tool for cell and molecular biology. Nature 375, 254-256 (1995).
57. T. Heyduk, Y. Ma, H. Tang, R. H. Ebright, "Fluorescence anisotropy: rapid, quantitative assay for protein-DNA and protein-protein interaction" in Methods in enzymology. (Elsevier, 1996), vol. 274, pp. 492-503.
58. D. M. Jameson, W. H. Sawyer, "[12] Fluorescence anisotropy applied to biomolecular interactions" in Methods in enzymology. (Elsevier, 1995), vol. 246, pp. 283-300.
59. M. S. Nasir, M. E. Jolley, Fluorescence polarization: an analytical tool for immunoassay and drug discovery. Combinatorial Chemistry and High Throughput Screening 2, 177-190 (1999).
60. S. E. Acuner Ozbabacan, H. B. Engin, A. Gursoy, O. Keskin, Transient protein–protein interactions. Protein engineering, design and selection 24, 635-648 (2011).
61. H. Ashkenazy et al., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic acids research 44, W344-W350 (2016).
62. L. A. Matthews, L. A. J. b. Simmons, Cryptic adaptor protein interactions regulate DNA replication initiation. Mol Microbiol, 313882 (2018).
63. R. A. Laskowski, J. Jabłońska, L. Pravda, R. S. Vařeková, J. M. Thornton, PDBsum: Structural summaries of PDB entries. Protein Science 27, 129-134 (2018).
64. Y. C. Li, V. Naveen, M. G. Lin, C. D. Hsiao, Structural analyses of the bacterial primosomal protein DnaB reveal that it is a tetramer and forms a complex with a primosomal re-initiation protein. J Biol Chem 292, 15744-15757 (2017).
65. G. Scholefield, J. Errington, H. Murray, Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. The EMBO journal 31, 1542-1555 (2012).
66. M. Krause, B. Ruckert, R. Lurz, W. Messer, Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J Mol Biol 274, 365-380 (1997).
67. S. Zorman, H. Seitz, B. Sclavi, T. Strick, Topological characterization of the DnaA–oriC complex using single-molecule nanomanipuation. Nucleic acids research 40, 7375-7383 (2012).
68. J. P. Erzberger, M. L. Mott, J. M. Berger, Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nature structural & molecular biology 13, 676 (2006).
69. R. S. Fuller, B. E. Funnell, A. Kornberg, The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38, 889-900 (1984).
70. W. K. Smits, A. I. Goranov, A. D. Grossman, Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 75, 452-461 (2010).
指導教授 蕭傳鐙 王健家(Chwan-Deng Hsiao Chien-Chia Wang) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明