博碩士論文 106821007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.236.59.63
姓名 陳威承(WEI-CHENG CHEN)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 研究過氧化氫體和粒線體在肌肉細胞生成過程中的功能變化
(Investigating the functional changes of peroxisomes and mitochondria during myogenesis)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ MyoD對於PGC-1α 基因表現之調控機制
★ 雄性素受體對於肌肉前驅細胞決定的功用★ Nanog和Oct4表現對肌肉分化之影響
★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響
★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控
★ FoxOs 大量表現對肌肉細胞末期分化的影響★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現
★ Oc4和Nanog共同抑制末端肌肉分化★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色
★ PGC-1α 與 Stra13 間之交互作用★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制★ 探討小鼠骨骼肌中FoxO6的表現情形
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-7-31以後開放)
摘要(中) 在骨骼肌中,過氧化氫體和粒線體為兩個負責氧化代謝及活性氧物質移除的重要胞器,但現今這兩個胞器在肌肉生成過程中,生理上所扮演的角色或功能並未被清楚了解。我們在有關過氧化氫體的初步數據顯示,透過穩定細胞株C2C12-RFP-PTS1 monoclone 13能讓我們觀察肌肉生成作用中過氧化氫體的數量變化,並發現分化後的肌管其過氧化氫體數量有顯著增加,我們也發現在PMB (proliferative myoblast)時期有較高的過氧化氫酶活性。而在有關粒線體的初步數據顯示,我們透過陽離子的親脂性粒線體膜電位染劑MitoTracker Red CMXRos和JC-1,發現在MT (myotube)時期的粒線體膜電位有顯著的下降,但在粒腺體內膜上的重要酵素琥珀酸去氫酶(succinate dehydrogenase, SDH),其活性也隨著肌肉生成過程中有明顯上升。與氧化代謝有關的活性氧物質(ROS)和ATP含量在肌肉生成過程中分別顯著上升和下降,而氧化還原指數和NADH/FAD的比值在肌肉生成過程中也沒有太大的影響。過去實驗室對Bhlhe40 (basic helix-loop-helix family, membrane e40)在骨骼肌的氧化代謝上有深入了解。我們發現在CMB時期過量表現Bhlhe40並不會影響過氧化氫酶的活性,在CMB和MT時期過量表現Bhlhe40會稍微增加SDH活性而基因減弱(knockdown, KD)則會降低SDH活性,超氧化物歧化酶(superoxide dismutase, SOD)的活性則沒有任何變化。此外我們也觀察到Bhlhe40會降低MTCO1、SDHB和NDUFB8 的蛋白質含量。在未來我們會著重在分子生物機制,觀察在肌肉生成過程中有關氧化代謝基因的RNA和蛋白質表現量的變化,並可以透過穩定細胞株C2C12-RFP-PTS1 monoclone 13應用在藥物篩選等初步實驗,且透過基因減弱技術觀察過氧化氫體的重要生物合成基因pex3、pex16和pex19在骨骼肌內的過氧化氫體在肌肉生成過程中的影響,以模擬過氧化氫體缺陷的相關疾病在骨骼肌的影響,未來也會持續深入了解Bhlhe40在肌肉生成過程中在氧化代謝中的生理意義及分子機制。
摘要(英) Peroxisomes and mitochondria are two crucial organelles responsible for oxidative metabolism and reactive oxygen species (ROS) removal in skeletal muscle (SKM). To date, the physiological roles/functions of both organelles in myogenesis have not been well-established yet. Our preliminary data found that the stable clone C2C12-RFP-PTS1 monoclone 13 allowed us to trace the homeostasis of peroxisome number, and significant increase was found after terminal differentiation. We also found that there was higher catalase activity at proliferative myoblast (PMB) stage. Mitochondrial membrane potential (Δψm) determined by MitoTracker Red CMXRos and JC-1 staining was found decreased at myotube (MT) stage. Mitochondrial succinate dehydrogenase (SDH) activity was increased during myogenesis. ROS was increased but ATP content was decreased during myogenesis. The redox index NADH/FAD ratio didn’t change too much during myogenesis. Our recent studies have demonstrated the deep involvement of basic helix-loop-helix family, membrane e40 (Bhlhe40) in SKM oxidative metabolism. Here we found overexpression of Bhlhe40 didn’t change the catalase activity at CMB stage. We also found overexpression of Bhlhe40 slightly increased SDH, but not SOD, activity at CMB and MT stages. On the contrary, reduced SDH activity was observed in Bhlhe40 knockdown clone. We also found overexpression of Bhlhe40 decreased protein levels of MTCO1 (complex IV), SDHB (complex II) and NDUFB8 (complex I). In the near future, we will do qRT-PCR and Western blot to observe RNA and protein expression of genes related to oxidative metabolism. We will also do gene knockdown of important peroxisome biogenesis gene (pex3, pex16, pex19) on C2C12-RFP-PTS1 monoclone 13 to monitor peroxisome deficient disease during myogenesis by lentivirus infection, and there will be more experiments to investigate the further influence by Bhlhe40.
關鍵字(中) ★ 肌肉生成作用
★ 過氧化氫體
★ 粒線體
★ 氧化代謝
★ 肌纖維母細胞
關鍵字(英) ★ C2C12
★ Myogenesis
★ Oxidative metabolism
★ Peroxisome
★ Mitochondiron
論文目次 中文摘要 ----------------------------------------------------------- v
英文摘要 ----------------------------------------------------------- vi
聲明 ----------------------------------------------------------- vii
誌謝 ----------------------------------------------------------- viii
目錄 ----------------------------------------------------------- ix
縮寫與全名對照表 ----------------------------------------------------------- xii
第一章、 緒論------------------------------------------------------- 1
1. 肌肉生成(Myogenesis)---------------------------------------- 1
2. 骨骼肌(Skeletal muscle)--------------------------------------- 2
3. 過氧化氫體(Peroxisomes)-------------------------------------- 3
4. 粒線體(Mitochondria)----------------------------------------- 6
5. Basic helix-loop-helix family member e40 (Bhlhe40)----------------- 8
6. 研究動機與目的--------------------------------------------- 9
第二章、 材料與方法------------------------------------------------- 10
1. 實驗材料--------------------------------------------------- 10
2. 細胞轉染(Transfection) --------------------------------------- 11
3. 利用膠原蛋白溶液塗層玻片(Glass slide coating)------------------- 11
4. 免疫螢光染色(Immunofluorescence) ---------------------------- 12
5. 過氧化氫酶活性測試(Catalase activity assay)---------------------- 12
6. 粒線體膜電位差檢測(Δψm) ----------------------------------- 13
7. 琥珀酸去氫酶活性測試(Succinate dehydrogenase activity assay)------ 15
8. 活性氧物質(Reactive oxygen species, ROS)含量檢測--------------- 16
9. 細胞內NAD(P)H和FAD的含量檢測--------------------------- 17
10. 細胞內ATP的含量檢測--------------------------------------- 18
11. 超氧化物歧化酶活性測試(Superoxide dismutase activity assay)------- 20
12. 西方墨點實驗(Western blot)------------------------------------ 21
13. 使用慢病毒(Lentivirus)轉染細胞-------------------------------- 23
14. RNA萃取(RNA extraction)------------------------------------- 24
15. 反轉錄反應(Reverse transcription)------------------------------- 24
16. 即時聚合酶連鎖反應(Real-time PCR reaction)--------------------- 25
第三章、 結果 26
1. 透過穩定細胞株C2C12-RFP-PTS1 monoclone 13觀察在肌肉生成過程中過氧化氫體的數量變化,發現過氧化氫體的數量在MT時期有顯著上升------------------------------------------------------- 26
2. 證明藉由穩定細胞株C2C12-RFP-PTS1 monoclone 13所觀察到在MT時期的過氧化氫體增加,是因為肌肉生成作用而非培養液等人為因素 27
3. C2C12細胞在肌肉生成中,過氧化氫酶活性在PMB時期有較高的活性--------------------------------------------------------- 27
4. C2C12細胞在肌肉生成中,粒線體膜電位在MT時期有下降的趨勢-- 27
5. C2C12細胞在肌肉生成中,琥珀酸去氫酶的活性有逐漸增加的趨勢-- 28
6. 在肌肉生成的過程中,細胞內ROS的數值有逐漸增加的趨勢------- 28
7. 在肌肉生成的過程中,NADH/FAD的差異並沒有太大的差異,而ATP含量在MT時期較CMB時期低-------------------------------- 29
8. 穩定細胞株C2C12-tet-Bhlhe40-flag在肌肉生成過程中,過量表現Bhlhe40並不會影響CAT活性---------------------------------- 29
9. 在肌肉生成過程中,Bhlhe40過量表現會些微增加SDH活性且基因減弱會降低SDH活性,但是對SOD的活性沒有顯著差異------------ 30
10. 在肌肉生成過程中,Bhlhe40過量表現對氧化代謝相關的蛋白質表現量影響----------------------------------------------------- 30
第四章、 結論------------------------------------------------------- 32
1. C2C12在肌肉分化過程中,肌管的過氧化氫體數量有顯著上升,但catalase活性下降-------------------------------------------- 32
2. C2C12在肌肉生成過程中,粒線體膜電位、ROS、SDH和ATP的關係--------------------------------------------------------- 33
3. 探討Bhlhe40在肌肉生成過程中,對過氧化氫體和粒線體在氧化代謝中的影響--------------------------------------------------- 33
4. 穩定細胞株C2C12-RFP-PTS1 monoclone13在未來的可能性發展----------------------------------------------------------- 34
5. 未來發展--------------------------------------------------- 34
第五章、 圖表------------------------------------------------------- 36
圖一、 觀察穩定細胞株C2C12-RFP-PTS1 monoclone13在肌肉生成過程中,過氧化氫體數量的變化--------------------------------------- 37
圖二、 觀察C2C12-RFP-PTS1 monoclone13在不同培養狀態下,過氧化氫體的數量變化------------------------------------------------- 38
圖三、 觀察C2C12在肌肉生成過程中的過氧化氫酶活性變化------------- 39
圖四、 透過MitoTracker Red CMXRos觀察C2C12在肌肉生成過程中的粒線體膜電位變化----------------------------------------------- 40
圖五、 透過JC-1染色觀察C2C12在肌肉生成過程中的粒線體膜電位變化-- 42
圖六、 觀察C2C12在肌肉生成過程中的琥珀酸去氫酶活性變化----------- 43
圖七、 利用DCFDA觀察C2C12在肌肉生成過程中的細胞內活性氧物質的變化--------------------------------------------------------- 45
圖八、 觀察C2C12在肌肉生成過程中的NADH / FAD變化--------------- 46
圖九、 觀察C2C12在肌肉生成過程中的ATP含量變化 ------------------ 47
圖十、 培養穩定細胞株C2C12-tet-Bhlhe40-flag-------------------------- 48
圖十一、 觀察穩定細胞株tet-Bhlhe40-flag在肌肉生成過程中的CAT活性變化- 49
圖十二、 觀察Bhlhe40過量表現或基因減弱在肌肉生成過程中的SDH/SOD活性變化----------------------------------------------------- 51
圖十三、 利用西方墨點法觀察細胞株tet-Bhlhe40-flag在肌肉生成過程中有關氧化代謝的蛋白質含量變化------------------------------------- 53
圖十四、 慢病毒(Lentivirus)感染示意圖---------------------------------- 54
第六章、 參考文獻--------------------------------------------------- 55
第七章、 附錄------------------------------------------------------- 60
Ⅰ. 溶液及試劑配方--------------------------------------------- 60
Ⅱ. 藥品試劑--------------------------------------------------- 62
Ⅲ. 抗體------------------------------------------------------- 63
Ⅳ. Primer list--------------------------------------------------- 63
V. sh-RNA---------------------------------------------------- 64
參考文獻 Agrawal G, and Subramani S. 2016. De novo peroxisome biogenesis: Evolving concepts and conundrums. Biochim Biophys Acta. 1863:892-901.
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, and Young IG. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290:457-465.
Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, and Kurland CG. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 396:133-140.
Baechler BL, Bloemberg D, and Quadrilatero J. 2019. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy. 7:1-14.
Bartlett K, and Eaton S. 2004. Mitochondrial beta-oxidation. Eur J Biochem. 271:462-469.
Bartolomé F, and Abramov AY. 2015. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. In Methods Mol Biol. Vol. 1. Weissig V and Edeas M, editors. Humana Press, New York, NY. 263-270.
BERNHARD W, and ROUILLER C. 1956. Microbodies and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol. 2:355-360.
Birch-Machin MA. 2006. The role of mitochondria in ageing and carcinogenesis. Clin Exp Dermatol. 31:548-552.
Birch-Machin MA, and Turnbull DM. 2001. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 65:97-117.
Braun T, and Arnold HH. 1995. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 14:1176-1186.
Brooks GA. 1991. Current concepts in lactate exchange. Med Sci Sports Exerc. 23:895-906.
Chalamalasetty RB, Garriock RJ, Dunty WC Jr, Kennedy MW, Jailwala P, Si H, and Yamaguchi TP. 2014. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development. 141:4285-4297.
Chang HC, Kao CH, Chung SY, Chen WC, Aninda LP, Chen YH, Juan YA, and Chen SL. 2019. Bhlhe40 differentially regulates the function and number of peroxisomes and mitochondria in myogenic cells. Redox Biol. 20:321-333.
de Andrade PB, Casimir M, and Maechler P. 2004. Mitochondrial activation and the pyruvate paradox in a human cell line. FEBS Lett. 578:224-228.
de Duve C. 1960. Intracellular localization of enzymes. Nature. 187:836-853.
de Duve C. 1965. Function of microbodies (peroxisomes). J Cell Biol. 27:25A-26A.
de Duve C. 1982. Peroxisomes and related particles in historical perspective. Ann N Y Acad Sci. 386:1-4.
Duchen MR. 2000. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 529:57-68.
Fan CM, and Tessier-Lavigne M. 1994. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell. 79:1175-1186.
Fang Y, Morrell JC, Jones JM, and Gould SJ. 2004. PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J Cell Biol. 164:863-875.
Fransen M, Vastiau I, Brees C, Brys V, Mannaerts GP, and Van Veldhoven PP. 2005. Analysis of human Pex19p′s domain structure by pentapeptide scanning mutagenesis. J Mol Biol. 346:1275-1286.
Frontera WR, and Ochala J. 2015. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 96:183-195.
Fujiki Y. 2016. Peroxisome biogenesis and human peroxisome-deficiency disorders. Proc Jpn Acad Ser B Phys Biol Sci. 92:463-477.
Georgakoudi I, and Quinn KP. 2012. Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng. 14:351-367.
Gould SJ, Keller GA, Hosken N, Wilkinson J, and Subramani S. 1989. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 108:1657-1664.
Grechez-Cassiau A, Panda S, Lacoche S, Teboul M, Azmi S, Laudet V, Hogenesch JB, Taneja R, and Delaunay F. 2004. The transcriptional repressor STRA13 regulates a subset of peripheral circadian outputs. J Biol Chem. 279:1141-1150.
Guillaumond F, Lacoche S, Dulong S, Grechez-Cassiau A, Filipski E, Li XM, Lévi F, Berra E, Delaunay F, and Teboul M. 2008. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells. Biochem Biophys Res Commun. 369:1184-1189.
Hargreaves M. 2000. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol. 27:225-228.
Ivanova AV, Ivanov SV, Danilkovitch-Miagkova A, and Lerman MI. 2001. Regulation of STRA13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem. 276:15306-15315.
Jones JM, Morrell JC, and Gould SJ. 2001. Multiple distinct targeting signals in integral peroxisomal membrane proteins. J Cell Biol. 153:1141-1150.
Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, Rocancourt D, Buckingham M, Shinin V, and Tajbakhsh S. 2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature. 431:466-471.
Kodaka Y, Rabu G, and Asakura A. 2017. Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells Int. 2017:1376151.
Lazarow PB. 1989. Peroxisome biogenesis. Curr Opin Cell Biol. 1:630-634.
Lazarow PB, and Fujiki Y. 1985. Biogenesis of peroxisomes. Annu Rev Cell Biol. 1:489-530.
Leary SC, Battersby BJ, Hansford RG, and Moyes CD. 1998. Interactions between bioenergetics and mitochondrial biogenesis. Biochim Biophys Acta. 1365:522-530.
Liu C, Guo Y, Zhao F, Qin H, Lu H, Fang L, Wang J, and Min W. 2019. Potential mechanisms mediating the protective effects of a peptide from walnut (Juglans mandshurica Maxim.) against hydrogen peroxide induced neurotoxicity in PC12 cells. Food Funct. 10:3491-3501.
Liu Y, Fiskum G, and Schubert D. 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 80:780-787.
Lodhi IJ, and Semenkovich CF. 2014. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 19:380-392.
Maechler P, Carobbio S, and Rubi B. 2006. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol. 38:696-709.
Mastroyiannopoulos NP, Nicolaou P, Anayasa M, Uney JB, and Phylactou LA. 2012. Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One. 7:e29896.
Miao F, Su MY, Jiang S, Luo LF, Shi Y, and Lei TC. 2019. Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives. Oxid Med Cell Longev. 2019:2084805.
Motley AM, and Hettema EH. 2007. Yeast peroxisomes multiply by growth and division. J Cell Biol. 178:399-410.
Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J. 417:1-13.
Olson EN, and Klein WH. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8:1-8.
Osellame LD, Blacker TS, and Duchen MR. 2012. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 26:711-723.
Otto A, Schmidt C, and Patel K. 2006. Pax3 and Pax7 expression and regulation in the avian embryo. Anat Embryol (Berl). 211:293-310.
Oyewole AO, and Birch-Machin MA. 2015. Mitochondria-targeted antioxidants. FASEB J. 29:4766-4771.
Remels AH, Langen RC, Schrauwen P, Schaart G, Schols AM, and Gosker HR. 2010. Regulation of mitochondrial biogenesis during myogenesis. Mol Cell Endocrinol. 315:113-120.
Rhodin, J.A.G. 1954. Correlation of ultrastructural organization : and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney: an electron microscopic study. Stockholm. 187-206.
Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R, and Erdmann R. 2004. Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell. 15:3406-3417.
Ryan MT, and Hoogenraad NJ. 2007. Mitochondrial-nuclear communications. Annu Rev Biochem. 76:701-722.
Sakamuru S, Attene-Ramos MS, and Xia M. 2016. Mitochondrial Membrane Potential Assay. Methods Mol Biol. 1473:17-22.
Sato Y, Shibata H, Nakatsu T, Nakano H, Kashiwayama Y, Imanaka T, and Kato H. 2010. Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J. 29:4083-4093.
Schueller N, Holton SJ, Fodor K, Milewski M, Konarev P, Stanley WA, Wolf J, Erdmann R, Schliebs W, Song YH, and Wilmanns M. 2010. The peroxisomal receptor Pex19p forms a helical mPTS recognition domain. EMBO J. 29:2491-2500.
Silva JP, Köhler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, and Larsson NG. 2000. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet. 26:336-340.
Sin J, Andres AM, Taylor DJ, Weston T, Hiraumi Y, Stotland A, Kim BJ, Huang C, Doran KS, and Gottlieb RA. 2016. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 12:369-380.
Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J, Chung TK, Thin TH, and Taneja R. 2007. Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol. 177:647-657.
Sun H, and Taneja R. 2000. Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci U S A. 97:4058-4063.
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, and Kroemer G. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397:441-446.
Tulah AS, and Birch-Machin MA. 2013. Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin. Mitochondrion. 13:444-453.
Turley H, Wykoff CC, Troup S, Watson PH, Gatter KC, and Harris AL. 2004. The hypoxia-regulated transcription factor DEC1 (Stra13, SHARP-2) and its expression in human tissues and tumours. J Pathol. 203:808-813.
van der Zand A, Gent J, Braakman I, and Tabak HF. 2012. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell. 149:397-409.
Van Veldhoven PP. 2010. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res. 51:2863-2895.
Vercherat C, Chung TK, Yalcin S, Gulbagci N, Gopinadhan S, Ghaffari S, and Taneja R. 2009. Stra13 regulates oxidative stress mediated skeletal muscle degeneration. Hum Mol Genet. 18:4304-4316.
Wagatsuma A, and Sakuma K. 2013. Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal. 2013:593267.
Wagenmakers AJ. 1998. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev. 26:287-314.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明