博碩士論文 106821014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.207.240.230
姓名 陳怡嬛(I-Huan Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討MEHP對肌肉粒線體代謝功能的影響
(The influence of MEHP on metabolic and mitochondrial functions in skeletal muscle)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ MyoD對於PGC-1α 基因表現之調控機制
★ 雄性素受體對於肌肉前驅細胞決定的功用★ Nanog和Oct4表現對肌肉分化之影響
★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響
★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控
★ FoxOs 大量表現對肌肉細胞末期分化的影響★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現
★ Oc4和Nanog共同抑制末端肌肉分化★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色
★ PGC-1α 與 Stra13 間之交互作用★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制★ 探討小鼠骨骼肌中FoxO6的表現情形
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-7-31以後開放)
摘要(中) DEHP為最常用於塑料的化合物,與人們的生活息息相關,暴露在醫療器材、食品包裝、建築材料、化妝品、玩具等。DEHP一旦經由各種途徑吸收,就會快速代謝成MEHP。之前的研究指出,塑化劑可能提高胰島素阻抗及第二型糖尿病的風險,而骨骼肌又與代謝症候群有關,因此我們以C2C12為研究題材,觀察C2C12在處理100μM MEHP後對分化、代謝基因表現量及粒線體功能的影響。 在肌肉生成(myogenesis)過程中,細胞增殖狀態下給予MEHP會抑制分化,而分化4天後給予MEHP抑制分化的效果會顯著降低,因此以分化3天後再給予MEHP作為後續實驗,避免代謝作用受分化影響。葡萄糖攝取實驗顯示MEHP對細胞因受insulin刺激而增加的葡萄糖攝取並沒有影響,而在醣類與脂肪酸代謝方面,ERRα、PDK4和CPT1B基因的表現量皆有顯著上升。透過穩定細胞株C2C12-MTS-RFP觀察粒線體細胞形態,在CMB時期給予2天MEHP其粒線體趨向分裂狀態,而透過測定粒線體的DNA含量,發現不論在哪一個時期給予MEHP皆無影響,此外Tfam基因的表現量也沒有差異。為了得知粒線體功能是否受到影響,我們測定一系列在電子傳遞鏈過程中會發生的反應。給予MEHP不會影響到肌管時期的膜電位但是會讓succinate dehydrogenase活性下降,並且使ROS含量與SOD活性些許上升,而HO-1基因表現量也有所上升。接著我們測定電子傳遞鏈上各個具代表性的complex subunit 蛋白質的表現量,發現MEHP會影響到complex I subunit-Ndufb8的含量。為了確認MEHP影響Ndufb8的轉錄或轉譯,以Real time PCR及promoter activity 測定結果皆沒有受到MEHP影響。透過給予轉譯抑制劑cycloheximide 顯示MEHP可能影響Ndufb8的轉譯。綜合以上所述,塑化劑可能造成粒線體功能失調,並減少insulin的敏感度。
摘要(英) Di(2-ethylhexyl) phthalate (DEHP) is widely used in industry to increase the malleability of polyvinyl chloride. It can be found in plastic package, toys, clinic, cosmetic, building, and so on. Once entered the body, it is quickly metabolized to MEHP. Previous studies have shown that the level of phthalate is associated with the development of type-2 diabetes and insulin resistance. In this study, the effects of MEHP on myogenic differentiation, the metabolism of glucose and fatty acid oxidation, and mitochondrial function were observed. We treated C2C12 cells with 100 μM MEHP for two days and cells treated with MEHP in the proliferation stage during myogenesis failed to form myotubes. After three days of differentiation, MEHP treatment did not influence differentiation, we used this stage for measuring the effects of MEHP on metabolism so the intereference from differentiation could be avoided. First, we measured glucose uptake, in the stimulation of insulin situation, MEHP group caused the cells to absorb less glucose compared to the DMSO group. Moreover, we investigated the metabolism of glucose and fatty acid oxidation by using Real-time PCR. The gene expression of ERRα、PDK4、CPT1B is up-regulated. Second, we observed the effect of MEHP on mitochondrial function. C2C12-MTS-RFP was culture for three days in CMB stage, then treated with MEHP for two days and checked the mitochondrial morphology. The cells tended to become fission as compared to the DMSO group. It probably had poor function in mitochondria. So we checked the content of mitochondria. MITO DNA and the gene expression of Tfam was not affected by MEHP. To investigate the function of mitochondria, a series assays on the functions of electron transport system was measured. Membrane potential was not influenced by MEHP, while succinate dehydrogenase was decreased and produced ROS then enhance SOD activity. The expression of ROS-related gene HO-1 was significantly up-regulated. Third, we measured the protein level of 5 complexes in the electron transport system. In the myotube stage, treatment with MEHP decreased the lelvel of complex I subunit-Ndufb8. To ensure whether MEHP influenced transcription or translation stage, mRNA level and promoter activity were measured, and we found MEHP did not influence the transcription of Ndufb8. Through adding translation inhibitor cycloheximide in the medium, we found MEHP might interfere with the translation of Ndufb8. Taken together, MEHP can affect the function of mitochondria and by affecting the functions/levels of key factors in the ETC system.
關鍵字(中) ★ 塑化劑
★ 肌肉
★ 粒線體
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝 IV
聲明 (Declaration) V
縮寫表 VI
第一章 緒論 - 1 -
1.塑化劑對動物及人體代謝的影響 - 1 -
2. 肌肉分化 (Myogenesis) - 4 -
3.粒線體在肌肉分化中的角色 - 5 -
3-1粒線體基因 - 5 -
3-2粒線體的生合成 - 5 -
3-3粒線體的功能 - 6 -
4. 研究動機與目的 - 8 -
第二章 實驗材料與方法 - 9 -
2-1 實驗材料 - 9 -
2-1-1. 細胞株 - 9 -
2-1-2. 細胞培養 - 9 -
2-2. MTT assay - 9 -
2-3. Immunofluorescence - 9 -
2-4. 種C2C12-MTS-RFP玻片 - 10 -
2-5. 抽取gDNA - 10 -
2-6. 膜電位測定 - 11 -
2-7. ROS 測定 - 12 -
2-8. SOD測定 - 12 -
2-9. SDH activity - 13 -
2-10. 抽RNA - 14 -
2-10-1. Reverse Transcription (翻轉成cDNA) - 15 -
2-10-2. Real time PCR - 15 -
2-11. glucose uptake - 16 -
2-12. 西方墨點轉漬法(western blot) - 17 -
2-13.質體建構 - 18 -
2-14. Transient transfection - 21 -
2-15. Luciferase reporter assay - 22 -
2-16.建立TRE-EGFP Ndufb8 - 22 -
2-17. 建立穩定細胞株 - 23 -
第三章 實驗結果 - 24 -
Ⅰ. 選取100µM MEHP作為實驗濃度 - 24 -
II. 在不同階段處理MEHP 觀察分化狀態,分化3天後處理MEHP 2天,肌管的形成有下降趨勢但不顯著 - 24 -
III. MEHP皆不會影響C2C12 mtDNA的含量 - 25 -
IV. MEHP影響C2C12 MT時期的ROS、SOD及SDH活性 - 25 -
V. MEHP促使粒線體形態趨向分裂(Fission) - 26 -
VI. MEHP對細胞代謝相關基因的影響 - 27 -
VII. MEHP對於葡萄糖攝取的影響 - 27 -
ⅥII. MEHP對於粒線體Complex 蛋白質影響 - 28 -
IX. MEHP調控Ndufb8的轉譯 - 28 -
X. 在C2C12細胞中大量表現Ndufb8 - 30 -
第四章 討論 - 31 -
Ⅰ. MEHP對肌肉細胞分化的影響 - 31 -
II. MEHP影響粒線體功能 - 32 -
Ⅲ. MEHP使C2C12相對於DMSO葡萄糖攝取量減少 - 34 -
Ⅳ、結論 - 35 -
第五章 實驗結果圖 - 36 -
Fig. 5-1 不同濃度MEHP對C2C12於CMB及MT時期細胞存活率結果 - 37 -
Fig. 5-2 MEHP對C2C12肌管時期型態的影響 - 38 -
Fig. 5-3 C2C12在不同時期處理MEHP對分化狀況的影響 - 39 -
Fig. 5-4 C2C12在不同培養階段處理MEHP對粒線體DNA含量的影響 - 40 -
Fig. 5-5 MEHP對C2C12粒線體膜電位的影響 - 41 -
Fig. 5-6 MEHP對C2C12分化時期粒線體功能的影響 - 42 -
Fig. 5-7 以C2C12-RFP-MTS 細胞株觀察粒線體細胞型態 - 43 -
Fig. 5-8 MEHP對C2C12分化過程基因表現的影響 - 44 -
Fig. 5-9 MEHP對於C2C12 CMB及MT時期給予insulin後葡萄糖攝取的影響 - 45 -
Fig. 5-10 MEHP對C2C12細胞CMB及MT時期蛋白質表現量的影響 - 47 -
Fig. 5-11 MEHP對PDK4, CPT1B, NDUFB8 promoter活性的影響 - 48 -
Fig. 5-12 MEHP及cycloheximide對C2C12分化的影響 - 52 -
Fig. 5-13 MEHP及cycloheximide對C2C12分化的影響 - 54 -
Fig. 5-14 建立TRE-EGFP-Ndufb8 穩定細胞株 - 55 -
Fig. 5-15 Overexpression of Ndufb8 in C2C12 - 56 -
第六章 參考文獻 - 57 -
附錄 - 60 -
附錄一: RT-PCR Primers - 60 -
附錄二: PCR primer-for gDNA - 62 -
附錄三:質體 primers - 62 -
附圖一:TRE-EGFP-NDUFB8 CDS Sequence結果 - 62 -
附圖二: Pstable-NDUFB8 promoter Sequence結果 - 63 -
附錄四: 溶液配方 - 64 -
參考文獻 Agarwal, D.K., Eustis, S., Lamb 4th, J., Reel, J.R., and Kluwe, W.M. (1986). Effects of di (2-ethylhexyl) phthalate on the gonadal pathophysiology, sperm morphology, and reproductive performance of male rats. Environmental Health Perspectives 65, 343-350.
Albro, P.W. (1986). Absorption, metabolism, and excretion of di (2-ethylhexyl) phthalate by rats and mice. Environmental Health Perspectives 65, 293-298.
Alexeyev, M.F. (2009). Is there more to aging than mitochondrial DNA and reactive oxygen species? The FEBS journal 276, 5768-5787.
Chen, S.-S., Hung, H.-T., Chen, T.-J., Hung, H.-S., and Wang, D.-C. (2013). Di-(2-ethylhexyl)-phthalate reduces MyoD and myogenin expression and inhibits myogenic differentiation in C2C12 cells. The Journal of Toxicological Sciences 38, 783-791.
Constantin-Teodosiu, D. (2013). Regulation of muscle pyruvate dehydrogenase complex in insulin resistance: effects of exercise and dichloroacetate. Diabetes & Metabolism Journal 37, 301-314.
Duchen, M.R. (2004). Mitochondria in health and disease: perspectives on a new mitochondrial biology. Molecular Aspects of Medicine 25, 365-451.
El Bacha, T., Luz, M., and Da Poian, A. (2010). Dynamic adaptation of nutrient utilization in humans. Natl Educ 3, 8.
Feige, J.N., Gelman, L., Rossi, D., Zoete, V., Métivier, R., Tudor, C., Anghel, S.I., Grosdidier, A., Lathion, C., and Engelborghs, Y. (2007). The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor γ modulator that promotes adipogenesis. Journal of Biological Chemistry 282, 19152-19166.
Handschin, C., Chin, S., Li, P., Liu, F., Maratos-Flier, E., LeBrasseur, N.K., Yan, Z., and Spiegelman, B.M. (2007). Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. Journal of Biological Chemistry 282, 30014-30021.
Huang, X.-F., Li, Y., Gu, Y.-H., Liu, M., Xu, Y., Yuan, Y., Sun, F., Zhang, H.-Q., and Shi, H.-J. (2012). The effects of Di-(2-ethylhexyl)-phthalate exposure on fertilization and embryonic development in vitro and testicular genomic mutation in vivo. PloS one 7, e50465.
Kelly, D.P., and Scarpulla, R.C. (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development 18, 357-368.
Knutti, D., and Kralli, A. (2001). PGC-1, a versatile coactivator. Trends in Endocrinology & Metabolism 12, 360-365.
Li, X., Fang, E.F., Scheibye-Knudsen, M., Cui, H., Qiu, L., Li, J., He, Y., Huang, J., Bohr, V.A., and Ng, T.B. (2014). Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation, and mitochondrial dysfunction in the testis. Scientific Reports 4, 6434.
Li, X.b., Gu, J.d., and Zhou, Q.h. (2015). Review of aerobic glycolysis and its key enzymes–new targets for lung cancer therapy. Thoracic Cancer 6, 17-24.
Lin, J., Wu, H., Tarr, P.T., Zhang, C.-Y., Wu, Z., Boss, O., Michael, L.F., Puigserver, P., Isotani, E., and Olson, E.N. (2002). Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797.
Martinelli, M.I., Mocchiutti, N.O., and Bernal, C.A. (2006). Dietary di (2-ethylhexyl) phthalate-impaired glucose metabolism in experimental animals. Human & Experimental Toxicology 25, 531-538.
McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Current Biology 16, R551-R560.
Melnick, R.L., and Schiller, C.M. (1982). Mitochondrial toxicity of phthalate esters. Environmental health perspectives 45, 51-56.
Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., and Laurila, E. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34, 267.
Ngo, H.B., Kaiser, J.T., and Chan, D.C. (2011). The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nature Structural & Molecular Biology 18, 1290.
Posnack, N.G., Swift, L.M., Kay, M.W., Lee, N.H., and Sarvazyan, N. (2012). Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environmental Health Perspectives 120, 1243-1251.
Randle, P., Garland, P., Hales, C., and Newsholme, E. (1963). The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet 281, 785-789.
Ren, Q.-G., Yang, S.-L., Hu, J.-L., Li, P.-D., Chen, Y.-S., and Wang, Q.-S. (2016). Evaluation of HO-1 expression, cellular ROS production, cellular proliferation and cellular apoptosis in human esophageal squamous cell carcinoma tumors and cell lines. Oncology Reports 35, 2270-2276.
Rhodes, C., Orton, T.C., Pratt, I.S., Batten, P.L., Bratt, H., Jackson, S.J., and Elcombe, C.R. (1986). Comparative pharmacokinetics and subacute toxicity of di (2-ethylhexyl) phthalate (DEHP) in rats and marmosets: extrapolation of effects in rodents to man. Environmental Health Perspectives 65, 299-307.
Roden, M. (2004). How free fatty acids inhibit glucose utilization in human skeletal muscle. Physiology 19, 92-96.
Rosado-Berrios, C.A., Vélez, C., and Zayas, B. (2011). Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6 human lymphoblasts cells. Toxicology in Vitro 25, 2010-2016.
Signes, A., and Fernandez-Vizarra, E. (2018). Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays in biochemistry 62, 255-270.
Srinivasan, C., Khan, A.I., Balaji, V., Selvaraj, J., and Balasubramanian, K. (2011). Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat. Toxicology and Applied Pharmacology 257, 155-164.
Suliman, H.B., Carraway, M.S., Welty-Wolf, K.E., Whorton, A.R., and Piantadosi, C.A. (2003). Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. Journal of Biological Chemistry 278, 41510-41518.
Suárez-Rivero, J., Villanueva-Paz, M., de la Cruz-Ojeda, P., de la Mata, M., Cotán, D., Oropesa-Ávila, M., de Lavera, I., Álvarez-Córdoba, M., Luzón-Hidalgo, R., and Sánchez-Alcázar, J. (2017). Mitochondrial dynamics in mitochondrial diseases. Diseases 5, 1.
Tang, X., Luo, Y.-X., Chen, H.-Z., and Liu, D.-P. (2014). Mitochondria, endothelial cell function, and vascular diseases. Frontiers in Physiology 5, 175.
Terada, S., and Tabata, I. (2004). Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle. American Journal of Physiology-Endocrinology and Metabolism 286, E208-E216.
Viswanathan, M.P., Mullainadhan, V., Chinnaiyan, M., and Karundevi, B. (2017). Effects of DEHP and its metabolite MEHP on insulin signalling and proteins involved in GLUT4 translocation in cultured L6 myotubes. Toxicology 386, 60-71.
Wu, H., and Ballantyne, C.M. (2017). Skeletal muscle inflammation and insulin resistance in obesity. The Journal of Clinical Investigation 127, 43-54.
Youle, R.J., and Van Der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062-1065.
Zhang, W., Shen, X.-Y., Zhang, W.-W., Chen, H., Xu, W.-P., and Wei, W. (2017). The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level. Toxicology Mechanisms and Methods 27, 245-252.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明