博碩士論文 106821015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.236.59.63
姓名 莊芳晴(Fang-Ching Chuang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
(Investigate the role of ETHYLENE OVERPRODUCER1-LIKE1 (EOL1) and EOL2 in seedling development during photomorphogenesis in Arabidopsis thalaiana)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在暗形態發育的期間,植物的幼苗呈現拉長的下胚軸及閉鎖的子葉。當光照時,幼苗會產生去白化現象,呈現光形態的發育,包括較短的下胚軸長度及子葉展開的情況。植物激素乙烯會抑制白化苗子葉的展開,但在光照後會促進子葉的綠化。先前研究得知ETHYLENE OVERPRODUCER1(ETO1)及ETO1-LIKE(EOL1/2)蛋白質為Cullin3 (CUL3)-based泛素連接酶,ETO1及EOL1/2藉由降解第2型ACS蛋白質,共同負向調控阿拉伯芥的乙烯生合成。在本研究中,我們發現在光暗轉換時,EOL1及EOL2在幼苗發育中扮演新穎的角色。在4天暗處理後,eol1及eol2單一或雙重突變株的白化苗呈現較高的子葉展開率,接著在轉移至2天全光照後,突變株幼苗則呈現較低的子葉綠化率。利用微矩陣法所進行的基因轉錄研究分析結果,我們發現在四天暗處裡下eto1、eol1及eol2白化苗中,數個參與光合作用的基因與野生種呈現顯著差異性的表現。其中,NADPH-原葉綠素酯氧化還原酶(PROTOCHLOROPHYLLIDE OXIDOREDUCTASE, POR) PORA及PORB為促進葉綠素合成的重要酵素,催化原葉綠素(protochlorophyllide, Pchlide)轉化成脫植醇葉綠素(chlorophyllide, Chlide)。我們發現在eol1及eol2中PORA/B的基因表現為下降,而且脫植醇葉綠素的量在eol1及eol2中亦隨之減少,但在eto1與野生種控制組並沒有顯著差異。此結果表示在光暗轉換時EOL1及EOL2促進白化苗的綠化,在光形態發生中扮演著異於ETO1的角色。為了探討EOL蛋白質在幼苗發育的新功能,我們利用酵母菌雙雜交法,由3天大白化苗所製備而成的阿拉伯芥之cDNA庫,篩選出與EOL1有交互作用的蛋白質。在數個可能的候選蛋白中,我們發現JASMONATE ZIM DOMAIN9(JAZ9)與EOL1有專一性的交互作用,JAZ蛋白質為茉莉酸訊息傳遞路徑中的負調控因子。進一步的研究結果顯示,同屬為第五型JAZ蛋白的JAZ3及JAZ9,皆能夠與ETO1、EOL1及EOL2在酵母菌雙雜交系統中有交互作用,而位於JAZ9之羧基端的Jas結構域呈現與EOL1蛋白質有專一的交互作用。本研究結果揭露,EOL蛋白質和茉莉酸之間可能存在著共同調控幼苗光形態發育訊息的交互作用。最後,我們提出一個假設模型説明EOL1和EOL2在幼苗發育時對光反應的可能調節機制。
摘要(英) When exposed to light, plant seedlings undergo de-etiolation development, termed photomorphogenesis, which exhibits reduced hypocotyl elongation and cotyledon opening followed by greening prepared for photosynthesis. The plant gaseous hormone ethylene inhibits cotyledon opening and reduces hypocotyl elongation in the dark-grown (etiolated) seedlings but promotes cotyledon greening during photomorphogenesis. The Arabidopsis ETHYLENE OVERPRODUCER1 (ETO1) and ETO1-LIKE (EOL1 and EOL2) proteins were previously identified as components of cullin3(CUL3)-based ubiquitin E3 ligase to negatively regulate ethylene biosynthesis by promoting protein degradation of type 2 ACC synthases (ACS). In this study, we reveal a novel role of EOL1 and EOL2 in seedling development during dark-to-light transition. We found that the 4-d-old etiolated seedlings of eol1 and eol2 single and double mutants showed a higher percentage of cotyledon opening but a lower cotyledon greening rate after being exposed to white light for 2 days. Microarray analysis of 4-d-old etiolated eto1, eol1 and eol2 seedlings showed several genes involved in photosynthesis, including the key enzymes essential for chlorophyll synthesis, PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) PORA and PORB that catalyze the conversion of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), were repressed in eol1 and eol2 but not in eto1. In line with this finding, the accumulation of Chlide was reduced in the etiolated seedlings of eol1 and eol2 but not in eto1. Our data suggest that EOL1 and EOL2 may play a regulatory role in photomorphogenesis by facilitating greening of etiolated seedlings upon exposure to light. To investigate the functional role of EOL proteins, we sought to identify interacting proteins of EOL1 by screening an Arabidopsis cDNA library prepared from 3-d-old etiolated seedlings using the yeast two-hybrid (Y2H) system. Among several potential interacting proteins, we found that JASMONATE ZIM DOMAIN9 (JAZ9) interacts with EOL1. JAZ proteins act as negative regulators of JA signaling pathway in Arabidopsis. Further analysis indicated that the Jas domain at C terminus in JAZ9 is responsible for the specific interaction with EOL1 in yeast. In addition, JAZ3 and JAZ9, which belong to the group of type 5 JAZ proteins as JAZ9, can interact with ETO1, EOL1 and EOL2 by the Y2H assay. Our data suggest a potential relationship between EOL proteins and JA signaling pathway in seedling development responsive to light. Finally, we propose a hypothetical model to further study the underlying regulatory mechanisms of EOL1 and EOL2 in seedling development during photomorphogenesis.
關鍵字(中) ★ 阿拉伯芥
★ 光形態發育
★ 乙烯
★ 茉莉酸
關鍵字(英) ★ Arabidopsis thalaiana
★ Photomorphogenesis
★ Ethylene
★ Jasmonate
論文目次 目錄
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖表目錄 vi
一、緒論 1
二、實驗材料與方法 16
三、實驗結果 16
1、鑑定eto1、eol1及eol2基因突變株 16
2、eto1、eol1及eol2白化苗呈現不同的下胚軸長度 16
3、在暗處理下,EOL1及EOL2參與調控子葉的展開 17
4、在光暗轉換處理下,EOL1及EOL2參與調控子葉的綠化 17
5、EOL1及EOL2調控PORA及PORB表現及葉綠素生成 18
6、利用酵母菌雙雜交法篩選與EOL1交互作用的蛋白 19
7、JAZ9140-267與EOL1有專一性之蛋白交互作用 20
8、全長JAZ3及JAZ9與ETO1、EOL1及EOL2有蛋白交互作用 20
9、JAZ9利用Jas區域與EOL1進行蛋白質交互作用 21
四、討論 23
五、參考文獻 27
六、附錄 59



圖表目錄
表一、基因功能分類(Gene Ontology)分析受EOL1及EOL2調控的基因分群 33
表二、基因功能分類分析受EOL1及EOL2調控的基因列表 34
表三、利用酵母菌雙雜交法篩選所得與EOL1有蛋白交互作用的基因列表 42
圖一、鑑定eto1, eol1 及 eol2的同型合子基因突變株 45
圖二、eto1, eol1及eol2突變株在三天暗處理下所呈現的下胚軸長度 46
圖三、eol1及eol2突變株在四天暗處理下所呈現子葉展開的性狀 47
圖四、eol1及eol2突變株在光暗轉換的處理下所呈現子葉黃化的性狀 48
圖五、利用基因微矩陣法(Microarray)分析四天暗處裡之eol1, eol2及eto1幼苗基
因表現變化 49
圖六、即時聚合酶鏈鎖反應(Real-time PCR)分析PORA、PORB及PORC在四
天暗處裡之eol1及eol2突變株中基因表現的變化 50
圖七、利用酵母菌雙雜交法篩選與EOL1交互作用的蛋白質 51
圖八、利用酵母菌雙雜交法檢測EOL1、EOL2及 ETO1與JAZ9140-267的蛋白質
交互作用 52
圖九、阿拉伯芥JAZ家族蛋白之親緣樹狀圖 53
圖十、利用酵母菌雙雜交法檢測ETO1、EOL1及EOL2與全長JAZ9及JAZ3之
蛋白質交互作用 54
圖十一、阿拉伯芥JAZ9與JAZ3及JAZ4的胺基酸序列比對 55
圖十二、利用定點突變法建構不同JAZ9蛋白結構域之突變序列 56
圖十三、利用酵母菌雙雜交法發現JAZ9利用Jas區域與EOL1進行專一之蛋白質
交互作用 57
圖十四、建立EOL1/2、JAZ3/4/9與PORA/B調控子葉開闔與綠化之假設模型 58
附錄一、測量帶有eol1或eol2背景突變株之Pchlide及Chlide含量 59
附錄二、ETO1、EOL1及EOL2具有高度相似的蛋白質結構 61
附錄三、質體pGBKT7-ETO1 62
附錄四、質體pGBKT7-EOL1 63
附錄五、質體pGBKT7-EOL2 64
附錄六、質體pGADT7-JAZ9 65
附錄七、植物體內的葉綠素生成途徑 66
附錄八、EIN3/EIL1和PIF1在調控子葉綠化中的作用模型 67
附錄九、ETO1、EOL1及EOL2之T-DNA插入位點圖 68
參考文獻 Alonso, J. M., T. Hirayama, G. Roman, S. Nourizadeh and J. R. Ecker (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284(5423): 2148-2152.
Ang, L. H., S. Chattopadhyay, N. Wei, T. Oyama, K. Okada, A. Batschauer and X. W. Deng (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1(2): 213-222.
Bari, R. and J. D. Jones (2009). Role of plant hormones in plant defence responses. Plant Mol Biol 69(4): 473-488.
Bleecker, A. B., J. J. Esch, A. E. Hall, F. I. Rodriguez and B. M. Binder (1998). The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc Lond B Biol Sci 353(1374): 1405-1412.
Brusslan, J. A. and M. P. Peterson (2002). Tetrapyrrole regulation of nuclear gene expression. Photosynthesis Research 71(3): 185-194.
Buhr, F., M. El Bakkouri, O. Valdez, S. Pollmann, N. Lebedev, S. Reinbothe and C. Reinbothe (2008). Photoprotective role of NADPH : protochlorophyllide oxidoreductase A. Proceedings of the National Academy of Sciences of the United States of America 105(34): 12629-12634.
Buhr, F., M. El Bakkouri, O. Valdez, S. Pollmann, N. Lebedev, S. Reinbothe and C. Reinbothe (2008). Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci U S A 105(34): 12629-12634.
Chang, C., S. F. Kwok, A. B. Bleecker and E. M. Meyerowitz (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262(5133): 539-544.
Chang, K. N., S. Zhong, M. T. Weirauch, G. Hon, M. Pelizzola, H. Li, S. S. Huang, R. J. Schmitz, M. A. Urich, D. Kuo, J. R. Nery, H. Qiao, A. Yang, A. Jamali, H. Chen, T. Ideker, B. Ren, Z. Bar-Joseph, T. R. Hughes and J. R. Ecker (2013). Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2: e00675.
Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi and J. R. Ecker (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7): 1133-1144.
Chattopadhyay, S., L. H. Ang, P. Puente, X. W. Deng and N. Wei (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10(5): 673-683.
Chen, Y. F., M. D. Randlett, J. L. Findell and G. E. Schaller (2002). Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277(22): 19861-19866.
Chini, A., S. Fonseca, J. M. Chico, P. Fernandez-Calvo and R. Solano (2009). The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant Journal 59(1): 77-87.
Chini, A., S. Gimenez-Ibanez, A. Goossens and R. Solano (2016). Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33: 147-156.
Christians, M. J. and R. D. Vierstra (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57(2): 332-345.
Duek, P. D. and C. Fankhauser (2005). bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10(2): 51-54.
Fellerer, C., R. Schweiger, K. Schongruber, J. Soll and S. Schwenkert (2011). Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. Mol Plant 4(6): 1133-1145.
Gagne, J. M., J. Smalle, D. J. Gingerich, J. M. Walker, S. D. Yoo, S. Yanagisawa and R. D. Vierstra (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A 101(17): 6803-6808.
Gingerich, D. J., J. M. Gagne, D. W. Salter, H. Hellmann, M. Estelle, L. Ma and R. D. Vierstra (2005). Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280(19): 18810-18821.
Gommers, C. M. M. and E. Monte (2018). Seedling Establishment: A Dimmer Switch-Regulated Process between Dark and Light Signaling. Plant Physiol 176(2): 1061-1074.
Goslings, D., R. Meskauskiene, C. Kim, K. P. Lee, M. Nater and K. Apel (2004). Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40(6): 957-967.
Grant, M. R. and J. D. Jones (2009). Hormone (dis)harmony moulds plant health and disease. Science 324(5928): 750-752.
Guo, H. and J. R. Ecker (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6): 667-677.
Guzman, P. and J. R. Ecker (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2(6): 513-523.
Holm, M., L. G. Ma, L. J. Qu and X. W. Deng (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development 16(10): 1247-1259.
Howe, G. A. and G. Jander (2008). Plant immunity to insect herbivores. Annu Rev Plant Biol 59: 41-66.
Hsieh, H. L. and H. Okamoto (2014). Molecular interaction of jasmonate and phytochrome A signalling. Journal of Experimental Botany 65(11): 2847-2857.
Huq, E., B. Al-Sady, M. Hudson, C. Kim, K. Apel and P. H. Quail (2004). Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305(5692): 1937-1941.
Ju, C., G. M. Yoon, J. M. Shemansky, D. Y. Lin, Z. I. Ying, J. Chang, W. M. Garrett, M. Kessenbrock, G. Groth, M. L. Tucker, B. Cooper, J. J. Kieber and C. Chang (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109(47): 19486-19491.
Kende, H. (1989). Enzymes of ethylene biosynthesis. Plant Physiol 91(1): 1-4.
Kieber, J. J., M. Rothenberg, G. Roman, K. A. Feldmann and J. R. Ecker (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72(3): 427-441.
Kuppusamy, K. T., C. L. Walcher and J. L. Nemhauser (2009). Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69(4): 375-381.
Leivar, P., E. Monte, Y. Oka, T. Liu, C. Carle, A. Castillon, E. Huq and P. H. Quail (2008). Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18(23): 1815-1823.
Leon, J. (2013). Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem 69: 299-313.
Li, W., M. Ma, Y. Feng, H. Li, Y. Wang, Y. Ma, M. Li, F. An and H. Guo (2015). EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163(3): 670-683.
Li, Y., K. Varala and M. E. Hudson (2014). A survey of the small RNA population during far-red light-induced apical hook opening. Front Plant Sci 5: 156.
Lian, H. L., S. B. He, Y. C. Zhang, D. M. Zhu, J. Y. Zhang, K. P. Jia, S. X. Sun, L. Li and H. Q. Yang (2011). Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25(10): 1023-1028.
Liu, B., Z. Zuo, H. Liu, X. Liu and C. Lin (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25(10): 1029-1034.
Liu, X., Y. Li and S. Zhong (2017). Interplay between Light and Plant Hormones in the Control of Arabidopsis Seedling Chlorophyll Biosynthesis. Front Plant Sci 8: 1433.
Liu, X., R. Liu, Y. Li, X. Shen, S. Zhong and H. Shi (2017). EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast Development in Buried Seedlings. Plant Cell 29(12): 3051-3067.
Lu, X. D., C. M. Zhou, P. B. Xu, Q. Luo, H. L. Lian and H. Q. Yang (2015). Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol Plant 8(3): 467-478.
Lyzenga, W. J. and S. L. Stone (2012). Regulation of ethylene biosynthesis through protein degradation. Plant Signal Behav 7(11): 1438-1442.
Masuda, T., N. Fusada, N. Oosawa, K. Takamatsu, Y. Y. Yamamoto, M. Ohto, K. Nakamura, K. Goto, D. Shibata, Y. Shirano, H. Hayashi, T. Kato, S. Tabata, H. Shimada and K. Takamiya (2003). Functional analysis of isoforms of NADPH : protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant and Cell Physiology 44(10): 963-974.
Moon, J., L. Zhu, H. Shen and E. Huq (2008). PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl Acad Sci U S A 105(27): 9433-9438.
Nemhauser, J. and J. Chory (2002). Photomorphogenesis. Arabidopsis Book 1: e0054.
op den Camp, R. G. L., D. Przybyla, C. Ochsenbein, C. Laloi, C. H. Kim, A. Danon, D. Wagner, E. Hideg, C. Gobel, I. Feussner, M. Nater and K. Apel (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in arabidopsis. Plant Cell 15(10): 2320-2332.
Osterlund, M. T., C. S. Hardtke, N. Wei and X. W. Deng (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405(6785): 462-466.
Pauwels, L., G. F. Barbero, J. Geerinck, S. Tilleman, W. Grunewald, A. C. Perez, J. M. Chico, R. V. Bossche, J. Sewell, E. Gil, G. Garcia-Casado, E. Witters, D. Inze, J. A. Long, G. De Jaeger, R. Solano and A. Goossens (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464(7289): 788-791.
Pauwels, L. and A. Goossens (2011). The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23(9): 3089-3100.
Pauwels, L., D. Inze and A. Goossens (2009). Jasmonate-inducible gene: What does it mean? Trends Plant Sci 14(2): 87-91.
Potuschak, T., E. Lechner, Y. Parmentier, S. Yanagisawa, S. Grava, C. Koncz and P. Genschik (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 115(6): 679-689.
Qiao, H., Z. Shen, S. S. Huang, R. J. Schmitz, M. A. Urich, S. P. Briggs and J. R. Ecker (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105): 390-393.
Reinbothe, S. and C. Reinbothe (1996). "Regulation of chlorophyll biosynthesis in angiosperms. Plant Physiology 111(1): 1-7.
Reinbothe, S., C. Reinbothe, K. Apel and N. Lebedev (1996). Evolution of chlorophyll biosynthesis--the challenge to survive photooxidation. Cell 86(5): 703-705.
Reinbothe, S., C. Reinbothe, N. Lebedev and K. Apel (1996). PORA and PORB, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell 8(5): 763-769.
Robert-Seilaniantz, A., M. Grant and J. D. Jones (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49: 317-343.
Roman, G., B. Lubarsky, J. J. Kieber, M. Rothenberg and J. R. Ecker (1995). Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139(3): 1393-1409.
Schoefs, B. and F. Franck (2003). Protochlorophyllide reduction: Mechanisms and evolution. Photochemistry and Photobiology 78(6): 543-557.
Sheerin, D. J., C. Menon, S. zur Oven-Krockhaus, B. Enderle, L. Zhu, P. Johnen, F. Schleifenbaum, Y. D. Stierhof, E. Huq and A. Hiltbrunner (2015). Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27(1): 189-201.
Shen, X., Y. Li, Y. Pan and S. Zhong (2016). Activation of HLS1 by Mechanical Stress via Ethylene-Stabilized EIN3 Is Crucial for Seedling Soil Emergence. Front Plant Sci 7: 1571.
Shi, H., R. Liu, C. Xue, X. Shen, N. Wei, X. W. Deng and S. Zhong (2016). Seedlings Transduce the Depth and Mechanical Pressure of Covering Soil Using COP1 and Ethylene to Regulate EBF1/EBF2 for Soil Emergence. Curr Biol 26(2): 139-149.
Stephenson, P. G. and M. J. Terry (2008). Light signalling pathways regulating the Mg-chelatase branchpoint of chlorophyll synthesis during de-etiolation in Arabidopsis thaliana. Photochem Photobiol Sci 7(10): 1243-1252.
Stintzi, A. and J. Browse (2000). The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97(19): 10625-10630.
Tan, F. C., Q. Cheng, K. Saha, I. U. Heinemann, M. Jahn, D. Jahn and A. G. Smith (2008). Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. Biochem J 410(2): 291-299.
Tanaka, R. and A. Tanaka (2007). Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346.
Tian, T., Y. Liu, H. Yan, Q. You, X. Yi, Z. Du, W. Xu and Z. Su (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1): W122-W129.
Van der Ent, S., S. C. Van Wees and C. M. Pieterse (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13-14): 1581-1588.
Wang, K. L., H. Li and J. R. Ecker (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl: S131-151.
Wang, K. L., H. Yoshida, C. Lurin and J. R. Ecker (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428(6986): 945-950.
Wang, W. and B. A. Malcolm (1999). Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26(4): 680-682.
Wasternack, C. and B. Hause (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6): 1021-1058.
Withers, J., J. Yao, C. Mecey, G. A. Howe, M. Melotto and S. Y. He (2012). Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proc Natl Acad Sci U S A 109(49): 20148-20153.
Yan, C. and D. Xie (2015). Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13(9): 1233-1240.
Yoon, G. M. and J. J. Kieber (2013). 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25(3): 1016-1028.
Yu, Y., J. Wang, Z. Zhang, R. Quan, H. Zhang, X. W. Deng, L. Ma and R. Huang (2013). Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet 9(12): e1004025.
Zheng, Y., X. Cui, L. Su, S. Fang, J. Chu, Q. Gong, J. Yang and Z. Zhu (2017). Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant J 90(6): 1144-1155.
Zhong, S., M. Zhao, T. Shi, H. Shi, F. An, Q. Zhao and H. Guo (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci U S A 106(50): 21431-21436.
Zhong, S. W., M. T. Zhao, T. Y. Shi, H. Shi, F. Y. An, Q. Zhao and H. W. Guo (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 106(50): 21431-21436.
Zhou, P., M. F. Song, Q. H. Yang, L. Su, P. Hou, L. Guo, X. Zheng, Y. L. Xi, F. H. Meng, Y. Xiao, L. Yang and J. P. Yang (2014). Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 Promote Seedling Photomorphogenesis in Multiple Light Signaling Pathways. Plant Physiology 164(2): 841-852.
Zhu, Z., F. An, Y. Feng, P. Li, L. Xue, M. A, Z. Jiang, J. M. Kim, T. K. To, W. Li, X. Zhang, Q. Yu, Z. Dong, W. Q. Chen, M. Seki, J. M. Zhou and H. Guo (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108(30): 12539-12544.
指導教授 羅椀升 吳少傑(Wan-Sheng Lo Shaw-Jye Wu) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明