博碩士論文 106821604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.220.180.19
姓名 安媞卡(TITI RINDI ANTIKA)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 研究一個非典型alanyl-tRNA synthetase的作用機制
(Characterization of a noncanonical alanyl-tRNA synthetase)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Aminoacyl-tRNA synthetase(aaRSs)是一群普遍存在的原始酵素,它可以將特定胺基酸連接至其相對應的tRNA,因此是蛋白質合成的關鍵酵素。由於蛋白質合成發生在真核細胞的細胞質和線粒體中,因此需要兩組不同的aaRSs,一組在細胞質中作用,另一組在線粒體中作用。在大多數情況下,細胞質和線粒體的aaRS同功異構酶是由兩個不同的細胞核基因編碼,每種aaRS藉由tRNA上的識別決定基來辨認其tRNA。 tRNAAla是一個非常特別的例子,它的唯一識別決定基是G3:U70,這種現象在細菌、真核細胞、古生菌都是一致的。 G3:U70由AlaRS中的兩個高度保留胺基酸Asp / Asn辨認。有趣的是,小鼠線粒體tRNAAla含有G1:U72,卻沒有G3:U70;而其AlaRS序列中也沒有這二個高度保留的胺基酸。我們想知道G1:U72是否真的是小鼠線粒體tRNAAla的識別決定基。我們選殖了小鼠線粒體AlaRS(AlaRSm或AARS2)的基因(AARS2),並定序AARS2及成熟的tRNAmAla。我們的研究結果顯示,小鼠粒線體AARS2無法胺醯化大腸桿菌的總和tRNA,但可以輕微胺醯化酵母菌的總和tRNA,進一步分析發現某些酵母菌非同源tRNA具有G1:U72,這些tRNA可能被AARS2錯誤胺醯化。然而類似含有G1:U72的tRNA並不存在大腸桿菌總和tRNA中。與該發現一致,當粒線體AARS2由一個超強的TEF1啟動子表達時,小鼠粒線體AARS2對酵母具有毒性。此外,我們的定序實驗顯示:小鼠tRNAmAla中的U5:U68不正常配對並沒有被轉錄後修正。此外,純化的小鼠粒線體AARS2可以胺醯化自己的tRNAmAla,但無法胺醯化人類的tRNAnAla,這表示AARS2的主要識別決定基不是G3:U70或反密碼,可能是G1:U72。我們的實驗結果證實小鼠粒線體AARS2是一個獨特的AlaRS,可以辨認不含G3:U70的tRNAAla。
摘要(英) Aminoacyl–tRNA synthetases (aaRSs) belong to a ubiquitous and ancient family of enzymes that play an important role in protein synthesis by attaching a specific amino acid to its cognate tRNA. Since protein synthesis takes place in both cytoplasm and mitochondria in eukaryotes, two distinct sets of aaRSs are required, one functioning in the cytoplasm and the other in mitochondria. In most cases, the cytoplasmic and mitochondrial isozymes of an aaRS are encoded by two different nuclear genes, each recognizing its own tRNA isoacceptor. The only identity element in tRNAAla is G3:U70 in the acceptor stem through all three kingdoms of life. G3:U70 is recognized by two highly conserved residues Asp/Asn in alanyl-tRNA synthetase (AlaRS). Interestingly, mouse mitochondrial tRNAAla contains G1:U72, instead of G3:U70. We were wondering whether G1:U72 actually serves as the identity element for mouse mitochondrial tRNAAla. Pursuant to this objective, we have cloned the gene encoding mouse mitochondrial AlaRS (AlaRSm or AARS2) and sequenced the mature tRNAmAla. Our results showed that mouse AARS2 can charge yeast unfractionated tRNAs to a significant level, suggesting that certain non-cognate tRNAs with G1:U72 might be mischarged by this enzyme. Consistent with the finding, mouse AARS2 was toxic to yeast when expressed from a vector with a strong TEF1 promoter, suggesting that AARS2 might cause mistranslation by attaching alanine to non-cognate tRNAs with G1:U72. In addition, our sequencing data confirmed that the U5:U68 mismatch in the acceptor stem of mouse tRNAmAla is retained during processing. Moreover, purified mouse AARS2 could charge its own tRNAmAla (with G1:U72), but failed to charge H. sapiens tRNAAla or E. coli total tRNAs, suggesting that the anticodon and G3:U70 are not the major identity elements for recognition of tRNAAla by mouse AARS2. Thus, mouse AARS2 is a unique AlaRS that can recognize tRNAAla without the canonical identity element G3:U70.
關鍵字(中) ★ 胺醯化
★ 識別決定基
★ 粒線體
★ 蛋白質合成
★ 轉譯
關鍵字(英) ★ aminoacylation
★ identity element
★ mitochondria
★ protein synthesis
★ tRNA
論文目次 ABSTRACT i
ABSTRACT (in Chinese) ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENT iv
LIST OF FIGURES vi
ABBREVIATION vii
CHAPTER I INTRODUCTION 1
1.1 Protein synthesis in mitochondria 1
1.2 Aminoacyl-tRNA synthetase 1
1.3 Alanyl-tRNA synthetase and tRNAAla 2
1.4 The canonical identity element G3:U70 of tRNAAla and its recognition by AlaRS 2
1.5 Mouse mitochondrial tRNAAla and AlaRS 3
1.6 Specific aim 4
1.7 Hypothesis 4
CHAPTER II MATERIALS AND METHODS 5
2.1 Cloning of the genes encoding mouse mitochondrial AlaRS and tRNAAla 5
2.2 Site Directed Mutagenesis 5
2.3 Heterologous complementation assay for cytoplasmic AlaRS activity 6
2.4 Western Blotting 6
2.5 Complementation assay using temperature-sensitive E. coli AlaRS strain 6
2.6 Sequencing the gene encoding mouse mitochondrial AlaRS 7
2.7 Sequencing of mature mouse mitochondrial tRNAAla 7
2.8 Purification of mouse mitochondrial AlaRS 7
2.9 In vitro transcription of tRNAAla 8
2.10 In vitro Aminoacylation assay 8
CHAPTER III RESULTS 10
3.1 Mouse AlaRSm causes toxicity to yeast 10
3.2 An orthogonal pair of mouse AlaRSm and tRNAmAla can support the growth of
temperature-sensitive E. coli AlaRS strain 10
3.3 Sequencing of the gene encoding mouse mitochondrial AlaRS 11
3.4 U5:U68 in mouse mitochondrial tRNAAla is retained after processing 11
3.5 In vitro transcription of WT and mutant mouse mitochondrial tRNAsAla 12
3.6 Mouse mitochondrial AlaRS cannot charge a canonical tRNAAla 12
CHAPTER IV DISCUSSION 13
4.1 MmAlaRSm is a noncanonical AlaRS enzyme 13
4.2 MmtRNAmAla is a noncanonical tRNAAla 13
4.3 MmAlaRSm causes toxicity to yeast 14
4.4 MmAlaRSm can charge tRNAAla with G1:U72, but not tRNAAla with canonical
identity element G3:U70 15
4.5 G1:U72 is the identity element of MmtRNAmAla, but not the anticodon. 16
REFERENCES 18
APPENDIX 36

參考文獻 Alexandra G, Henna T, Liliya E, Pekka E, Tuulia H,Tiina O, Riikka HH, Johanna T, Taneli R, Matej O, Riitta K, Outi T, Kalle OJS, Anders P, Tiina T, Anu S. 2011. "Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy." The American Journal of Human Genetics 88: 635-642.
Beuning PJ, Musier-Forsyth K. 1999. "Transfer RNA recognition by aminoacyl-tRNA synthetases." Biopolymers 1999: 1-28.
Burbaum JJ, Schimmel P. 1991. "Structural relationships and the classification of aminoacyl-tRNA synthetases." Journal of Biological Chemistry 226 (26): 16965–16968.
Carter, Charles W. 2017. "Coding of Class I and II aminoacyl-tRNA synthetases." Advances in Experimental Medicine and Biology 966: 103-148.
Chang CP, Lin G, Chen SJ, Chiu WC, Chen WH, Wang CC. 2008. "Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain." The Journal of Biological Chemistry 283: 30699-30706.
Chang, Tseng YK, Ko CY, Wang CC. 2012. "Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-function predecessor of mitochondrial origin." Nucleic Acid Research 40 (1): 314-322.
Chihade JW, Schimmel P. 1999. "Assembly of a catalytic unit for RNA microhelix aminoacylation using nonspecific RNA binding domains." Proceedings of the National Academy of Sciences USA 96 (22): 12316–12321.
Chihade, JW, Hayashibara K, Shiba K, Schimmel P. 1998. "Strong selective pressure to use G:U to mark an RNA acceptor stem for alanine." Biochemistry 37: 9193–9202.
Chong YE, Guo M, Yang XL, Kuhle B, Naganuma M, Sekine SI, Yokoyama S, Schimmel P. 2018. "Distinct ways of G:U recognition by conserved tRNA binding motifs." Proceedings of the National Academy of Sciences 1-6.
DJ, Patel. 1999. "Adaptive recognition in RNA complexes with peptides and protein modules." Current Opinion in Structural Biology 9 (1): 74-87.
Hou YM, Schimmel P. 1988. "A simple structural feature is a major determinant of the identity of a transfer RNA." Nature 333: 140-145.
Hou YM, Schimmel P. 1989. "Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution." Biochemistry 28: 6800-6804.
James DW, Katy CK. 2014. "Complementation of a temperature sensitive Escherichia coli rpoD mutation using Lactobacillus sigma factors." bioRxiv 1-16.
Johanna HKK, Holly LB, Ana B, Marie LS, Christoph F, Arnaud M, Craig S, Roberta F, Nils GL, Laura CG, James BS. 2016. "A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease." Cell Reports 16: 2980-2990.
Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. 2009. mitotRNAdb. January 3. Accessed May 20, 2019. http://mttrna.bioinf.uni-leipzig.de/mtDataOutput/.
Lee, YH, Chang CP, Cheng YJ, Kuo YY, Lin YS, and Wang CC. 2017. "Evolutionary gain of highly divergent tRNA specificities by two." Cellular and Molecular Life Sciences 74 (14): 2663–2677.
Levings CS III, Brown GG. 1989. "Molecular biology of plant mitochondria." Cell (171-179): 56.
Lonergan KM, Gray MW. 1993. "Editing of Transfer RNAs in Acanthamoeba castellanii mitochondria." Science 259: 812-816.
Lovato MA, Chihade JW, Schimmel P. 2001. "Translocation within the acceptor helix of a major tRNA identity determinant." The Embo Journal 20 (17): 4846-4853.
Lovato MA, Manal AS, Schimmel P. 2004. "Positional Recognition of a tRNA Determinant Dependent on a Peptide Insertion." Molecular Cell 13: 843-851.
M, Ruff. n.d. "Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA9Asp." Science.
Martin RP, Sibler AP, Gahrke CW, Kuo K, Edmonds CG, McCloskey JA, Dirheimer G. 1990. "5-[[(carboxymethyl)amino]methyl]uridine is found in the anticodon of yeast mitochondrial tRNAs recognizing two-codon families ending in a purine." Biochemistry 29: 956–959.
Musier-Forsyth K, et al. 1991. "Specificity for aminoacylation of an RNA helix: An unpaired, exocyclic amino group in the minor groove." Science 253: 784–786.
Naganuma M, Sekine SI, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. 2014. "The selective tRNA aminoacylation mechanism based on a single G:U pair." Nature 510 (7506): 507–511.
Osawa S, Jukes TH, Watanabe K, Muto A. 1992. "Recent evidence for evolution of the genetic code." Microbiol Rev 56: 229-264.
Park SJ, Hou YM, Schimmel P. 1989. "A single base pair affects binding and catalytic parameters in the molecular recognition of a transfer RNA." Biochemistry 28: 2740–2746.
Pel Hj, Grivell LA. 1994. "Protein synthesis in mitochondria." Molecular Biology Report 19: 183-194.
Peng B, William T, Henry M, Nielsen LK, Vickers CE. 2015. "Peng et al. Microb Cell Fact (2015) 14:91 DOI 10.1186/s12934-015-0278-5TECHNICAL NOTESControlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities." Microbial Cell Factories 14 (91): 1-11.
Ripmaster TL, Shiba K, and Schimmel P. 1995. "Wide crossspecies aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen." Proceedings of the National Academy of Sciences USA 92: 4932–4936.
Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D. 1991. "Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp)." Science 252: 1682-1689.
Shiba K, Ripmaster T, Suzuki N, Nichols R, Plotz P, Noda T, Schimmel P. 1995. "Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition." Biochemistry 34 (33): 10340-10349.
Shiba, Ripmaster T, Suzuki N, Nichols R, Plotz P, Noda T, Schimmel P. 1995. "Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recogntion." Biochemistry 34: 10340-10349.
Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC. 2004. "Translation of a Yeast Mitochondrial tRNA Synthetase Initiated at Redundant non-AUG codons." The Journal of Biological Chemistry 279 (48): 49656 –49663.
Tian Q, Wang C, Liu Y, Xie W. 2015. "Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase." Nucleic Acid Research 43 (5): 2980-2990.
Uter NT, Perona JJ. 2004. "Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics." Proceedings of the National Academy of Sciences USA 101: 14396–14401.
Yadavalli SS, Ibba M. 2012. "Quality control in aminoacyl-tRNA synthesis its role in translational fidelity." Advances in Protein Chemistry and Structural Biology 86: 1-43.
Zheng QY, Peng GX, Li G, Zhou JB, Zheng WQ, Xue MQ, Wang ED, Zhou XL. 2019. "The G3:U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase." Nucleic Acid Research 1-13.
指導教授 Prof. Wang Chien Chia 審核日期 2019-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明