博碩士論文 106825004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:44.220.62.183
姓名 黃育瑜(Yu-Yu Huang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 基於獨立EEG成分的運動執行、運動想像和運動觀察的源識別及比較乾/濕電極的獨立成分差異
(Source identification for the motor execution, motor imagery and motor observation conditions based on independent EEG components, and comparison of independent components of the EEG data obtained using dry and wet electrodes)
相關論文
★ Cultural Orientation and Acculturation: An Exploration of Measures of Cultural Orientation and Interplay of Factors Involved in Cross-Cultural Adjustment of Swazi Sojourners in Taiwan★ 探討P300事件關聯電位特徵用於分析隱藏訊息測驗之腦波資料的效果
★ 道德決策判斷:以道德基礎理論探討道德基本原則如何形塑個體的政治意識形態、社會議題之態度與司法判決★ How the Brain Deals with the Asymmetry between Chinese Subject and Object Relative Clauses: Support for a Dynamic Processing Theory
★ Increased Cognitive Load with Spatial Cueing Task Augments the P300 Amplitude Differences in EEG-based CIT Experiments★ 以毛筆筆刷、手掌觸摸、和指尖輕點的觸覺刺激探討情動觸摸所引 發的theta 頻段腦波強度變化
★ 運用VGG網絡對靜息態功能性磁振造影成分圖進行區分
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 運動想像(MI)是腦機介面使用的腦波特徵之一,常與動作執行(ME)及動作觀察(MO)一起討論,因為都會誘發運動皮質區的Mu節律事件相關失同步(ERD)。過去研究對於這三個運動任務是否有相同源定位有很多的討論,因此本研究的第一個目的是對三個運動任務做源識別。此外,近年來的EEG採集設備往方便性較高的乾電極發展。為利於腦機介面的應用及推動,本研究的第二個目的是利用運動的獨立成分特徵比較乾濕電極的收集訊號能力。
實驗一採用包含ME、MI跟MO的受試者內實驗設計,蒐集13位受試者的64通道濕電極腦電圖,利用兩種不同順序的獨立成分分析(ICA)來對不同運動任務進行源識別。第一,假設不同運動任務有相同的源,聯合三種運動任務的EEG數據做聯合分解,為SD選項;第二,假設三個運動任務有各自的源,分開三種運動任務的EEG數據執行個別分解,分別為ME、MI和MO選項。根據不同分解方式再依據MuERD挑選出不同選項之Mu成分,進一步使用EEGLAB中的DIPFIT2工具箱的四球殼模型做源定位。結果顯示SD選項相較於MO選項在腦中的位置更靠外側;MI選項較ME選項在腦中的位置更靠前側。除此之外,亦發現在不同選項間達統計差異的源定位結果中,頻率峰值也存在不同。因此推論ME、MI及MO應有各自的主導腦區,及符合先前的第二個假設。接著利用實驗一已知的Mu成分來比較乾電極的收集數據的穩定性,實驗二施行了與實驗一相似的實驗設計並收集16位受試者的30通道乾電極腦電圖。預處理乾電極數據時,根據數據特性更改了預處理步驟,並使用聯合分解得到Mu成分。為了避免不同維度影響ICA分解結果,降低濕電極通道數來比較乾濕電極的Mu節律特徵。結果顯示在不同通道的Mu成分辨識結果,並無明顯差異,說明在腦電圖的訊號採集中,不同通道數量對訊號品質的影響較小。此外,乾電極與濕電極在Mu成分辨識無顯著差異,但其中Mu成分的抑制能量及延遲時間有達統計顯著。結果顯示乾電極有能力辨識Mu成分的抑制特性,但信號品質有限不能做源定位等精確研究,而乾濕電極的訊號品質主要差異來自阻抗值的大小,因此降低阻抗值是未來發展乾電極的首要目標。
摘要(英) Motor imagery (MI) is one of the brain wave features used in the brain-computer interface(BCI). It is often discussed together with the motor execution (ME) and motor observation (MO), because these motor conditions all induce the event-related desychronization(ERD) of the mu rhythm in the motor-related cortex. The relationship between the source locations of where the mu-rhythm of the three motor conditions have been originated has been largely discussed in the literature. Therefore, the first purpose of this study was to identify and compare the sources of the three motor tasks. In addition, EEG acquisition equipment has developed toward more convenient dry electrodes in recent years. To facilitate the application and development of the BCI, the second purpose of this study was to compare the ability of the wet and dry electrodes to collect signals using the mu component characteristics.
First experiment collected 13 participants with wet-electrode EEG. The within subjects experimental design included motor execution, motor imagery and motor observation. Source identification of different motor tasks was performed using two different sequences of independent component analysis. First, the ICA was applied to the preprocessed EEG data with the data from the three different motor condition altogether for the single ICA decomposition(thus, SD); second, the ICA was separately applied to the preprocessed EEG data of each motor condition to obtain ME, MI and MO with ICA being applied to the data of each motor condition separately. Then, the motor-related independent components, maximally projecting to surrounding the C4 channel location with the maximal mu-suppression feature, of each individual subject would be selected and subjected to source localization process using the DIPFIT2 extension under the EEGLAB. If the sources of the three motor conditions were co-located, there should not be any difference in the sources identified with different ICA steps. The results show that the SD ICA is more lateral than the MO ICA, and the MI ICA is more anterior than the ME ICA. Therefore, the mu ERD activity seemed to be originated from different brain regions for the motor execution, motor imagery, and motor observation conditions. In addition, to compare the mu rhythm characteristics obtained using the dry and wet electrodes, the dry electrode EEG of 16 participants were further collected with the performance of the three motor conditions combined. To compare the result of the dry EEG system to that of the wet EEG system, the number of wet EEG channels was reduced from the original 64 channels to 30 channels to match the setting of the dry EEG system. The results indicated that the number of channels had less influence on signal quality. However, the higher impedance inherently associated with the dry EEG electrodes might play more an important role in affecting the signal quality of the acquired EEG signals. Nonetheless, the dry EEG electrodes could still pick up some of the mu-suppression characteristics associated with the MI and other motor conditions.
關鍵字(中) ★ 腦機介面
★ 動作想像
★ Mu節律
★ 乾電極腦波圖
關鍵字(英) ★ brain computer interface
★ motor imagery
★ mu rhythm
★ dry electrode EEG
論文目次 摘要
……………………………………………………………………
ii

Abstract
……………………………………………………………………
iv

致謝 …………………………………………………………………… vi
目錄
……………………………………………………………………
vii

圖目錄
……………………………………………………………………
ix

表目錄
……………………………………………………………………
x

第一章、
緒論……………………………………………………………...
1

1-1.
研究目的及論文架構……………………………………………
1

1-2.
文獻回顧…………………………………………………………
2

1-2-1.
腦機介面…………………………………………………………
2

1-2-2.
腦電圖(Electroencephalography, EEG) ………………………...
4

1-2-3.
動作想像(Motor Imagery, MI) ………………………………….
5

1-2-4.
動作相關腦區……………………………………………………
7

1-2-5.
獨立成分分析……………………………………………………
11

第二章、
研究方法……………...…………………………………………
13

2-1.
運動執行、運動想像和運動觀察的源識別……………………
13

2-1-1.
濕式電極實驗……………………………………………………
13

2-1-1-1.
受試者……………………………………………………………
13

2-1-1-2.
實驗設備…………………………………………………………
13

2-1-1-3.
實驗材料及過程…………………………………………………
14

2-1-1-4.
分析方法…………………………………………………………
15

2-1-1-4-1.
預處理……………………………………………………………
15

2-1-1-4-2.
聯合動作與單一動作的獨立成分分析…………………………
16

2-1-1-4-3.
Mu Component選擇……………………………………………..
17

2-1-1-4-4.
拓撲圖之間的相關性分析………………………………………
17

2-1-1-4-5.
用DIPFIT做源定位分析…………………………………….…
18

2-1-1-4-6.
以滑動窗口(Sliding Window)評估ERD成功率………………
18

2-1-1-4-7.
提取頻帶特徵……………………………………………………
19

2-1-1-4-8. 聯合分解之不同運動任務嘗試數量公平性…………………... 20
2-2.
乾、濕電極比較…………………………………………………
20

2-2-1.
乾式電極實驗……………………………………………………
20

2-2-1-1.
受試者……………………………………………………………
20

2-2-1-2.
實驗設備…………………………………………………………
21

2-2-1-3.
實驗材料及過程…………………………………………………
21

2-2-1-4.
分析方法…………………………………………………………
22

2-2-2.
降低濕式電極通道數……………………………………………
23

2-2-3.
比較乾式與濕式電極的mu特徵……………………………….
23

第三章、
研究結果………………………………………………………...
24

3-1.
運動執行、運動想像和運動觀察的源識別……………………
24

3-1-1.
比較聯合成分及個別成分………………………………………
24

3-1-2.
源位置統計結果…………………………………………………
29

3-1-3.
每個受試者的最佳窗口…………………………………………
31

3-1-4.
不同條件的頻率特徵……………………………………………
35

3-1-5.
聯合分解之不同運動任務嘗試數量公平性之結果……………
37

3-2.
乾、濕電極比較…………………………………………………
38

3-2-1.
64、30通道的濕電極比較………………………………………
38

3-2-2.
乾濕電極的mu節律特徵………………………………………
40

第四章、
討論……………………………………………………………...
47

4-1.
三種運動條件的源位置…………………………………………
47

4-2.
比較聯合分解及個別分解………………………………………
48

4-3.
受試者差異………………………………………………………
49

4-4.
不同任務與不同頻率特徵………………………………………
50

4-5.
乾溼電極比較……………………………………………………
50

第五章、
結論……………………………………………………………...
52

參考文獻 …………………………………………………………………… 53
參考文獻 Annett, J. (1995). Motor imagery: perception or action? Neuropsychologia, 33(11), 1395-1417.
Bai, O., Lin, P., Vorbach, S., Floeter, M. K., Hattori, N., & Hallett, M. (2007). A high performance sensorimotor beta rhythm-based brain–computer interface associated with human natural motor behavior. Journal of neural engineering, 5(1), 24.
Bedny, M., & Caramazza, A. (2011). Perception, action, and word meanings in the human brain: the case from action verbs. Annals of the New York Academy of Sciences, 1224(1), 81-95.
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., . . . Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13(2), 400-404.
Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., . . . Fourkas, A. (2008). Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39(3), 910-917.
Bundy, D. T., Wronkiewicz, M., Sharma, M., Moran, D. W., Corbetta, M., & Leuthardt, E. C. (2012). Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain–computer interfaces in hemiplegic stroke survivors. Journal of neural engineering, 9(3), 036011.
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2004). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral cortex, 15(8), 1243-1249.
Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993.
Cochin, S., Barthelemy, C., Lejeune, B., Roux, S., & Martineau, J. (1998). Perception of motion and qEEG activity in human adults. Electroencephalography and clinical neurophysiology, 107(4), 287-295.
Cochin, S., Barthelemy, C., Roux, S., & Martineau, J. (1999). Observation and execution of movement: similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience, 11(5), 1839-1842.
Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PloS one, 7(2), e30135.
Drew, A. R., Quandt, L. C., & Marshall, P. J. (2015). Visual influences on sensorimotor EEG responses during observation of hand actions. Brain research, 1597, 119-128.
Duann, J.-R., & Chiou, J.-C. (2016). A comparison of independent event-related desynchronization responses in motor-related brain areas to movement execution, movement imagery, and movement observation. PloS one, 11(9), e0162546.
Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., & Deutsch, J. (2008). Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Archives of physical medicine and rehabilitation, 89(8), 1580-1588.
Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: an fMRI study. Human brain mapping, 30(7), 2157-2172.
Höller, Y., Bergmann, J., Kronbichler, M., Crone, J. S., Schmid, E. V., Thomschewski, A., . . . Trinka, E. (2013). Real movement vs. motor imagery in healthy subjects. International journal of psychophysiology, 87(1), 35-41.
Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebral cortex, 18(12), 2775-2788.
Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., Van Gelderen, P., & Hallett, M. (2003). Functional properties of brain areas associated with motor execution and imagery. Journal of neurophysiology, 89(2), 989-1002.
Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2017). Neural correlates of motor imagery, action observation, and movement execution: A comparison across quantitative meta-analyses. BioRxiv, 198432.
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301-307.
Hauswald, A., Weisz, N., Bentin, S., & Kissler, J. (2013). MEG premotor abnormalities in children with Asperger′s syndrome: Determinants of social behavior? Developmental cognitive neuroscience, 5, 95-105.
Huang, D., Qian, K., Fei, D.-Y., Jia, W., Chen, X., & Bai, O. (2012). Electroencephalography (EEG)-based brain–computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 379-388.
Hwang, H.-J., Kwon, K., & Im, C.-H. (2009). Neurofeedback-based motor imagery training for brain–computer interface (BCI). Journal of neuroscience methods, 179(1), 150-156.
Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3), 626-634.
Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain sciences, 17(2), 187-202.
Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419-1432.
Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1), S103-S109.
Jeannerod, M., & Jeannerod, M. (1997). The cognitive neuroscience of action (Vol. 1997): Blackwell Oxford.
Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178.
Kasess, C. H., Windischberger, C., Cunnington, R., Lanzenberger, R., Pezawas, L., & Moser, E. (2008). The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage, 40(2), 828-837.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kropotov, J. (2016). Chapter 2.2–alpha rhythms. In: Functional Neuromarkers for Psychiatry. San Diego: Academic Press.
Lacourse, M. G., Orr, E. L., Cramer, S. C., & Cohen, M. J. (2005). Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage, 27(3), 505-519.
Leocani, L., Colombo, B., Magnani, G., Martinelli-Boneschi, F., Cursi, M., Rossi, P., . . . Comi, G. (2001). Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement—EEG evidence. Neuroimage, 13(6), 1186-1192.
Leocani, L., Toro, C., Manganotti, P., Zhuang, P., & Hallett, M. (1997). Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(3), 199-206.
Liao, L.-D., Lin, C.-T., McDowell, K., Wickenden, A. E., Gramann, K., Jung, T.-P., . . . Chang, J.-Y. (2012). Biosensor technologies for augmented brain-computer interfaces in the next decades. Proceedings of the IEEE, 100, 1553-1566.
Liao, Y., Acar, Z. A., Makeig, S., & Deak, G. (2015). EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions. Neuroimage, 112, 52-60.
Lin, C.-T., Liao, L.-D., Liu, Y.-H., Wang, I.-J., Lin, B.-S., & Chang, J.-Y. (2011). Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Transactions on Biomedical Engineering, 58(5), 1200-1207.
Lopez-Gordo, M., Pelayo, F., & Prieto, A. (2010). A high performance SSVEP-BCI without gazing. Paper presented at the The 2010 international joint conference on neural networks (IJCNN).
Lopez-Gordo, M., Sanchez-Morillo, D., & Valle, F. (2014). Dry EEG electrodes. Sensors, 14(7), 12847-12870.
Lotze, M., & Halsband, U. (2006). Motor imagery. Journal of Physiology-paris, 99(4-6), 386-395.
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., . . . Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal of cognitive neuroscience, 11(5), 491-501.
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. Paper presented at the Advances in neural information processing systems.
Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., & Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences, 94(20), 10979-10984.
McFarland, D. J., Miner, L. A., Vaughan, T. M., & Wolpaw, J. R. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain topography, 12(3), 177-186.
McFarland, D. J., Sarnacki, W. A., Townsend, G., Vaughan, T., & Wolpaw, J. R. (2011). The P300-based brain–computer interface (BCI): effects of stimulus rate. Clinical neurophysiology, 122(4), 731-737.
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36(1), 341-349.
Neuper, C., Wörtz, M., & Pfurtscheller, G. (2006). ERD/ERS patterns reflecting sensorimotor activation and deactivation. Progress in brain research, 159, 211-222.
Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211-1279.
Oehler, M., Neumann, P., Becker, M., Curio, G., & Schilling, M. (2008). Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. Paper presented at the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man; a clinical study of localization of function.
Perry, A., & Bentin, S. (2009). Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the μ-range and previous fMRI results. Brain research, 1282, 126-132.
Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and clinical neurophysiology, 42(6), 817-826.
Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology, 110(11), 1842-1857.
Pfurtscheller, G., & Neuper, C. (2006). Future prospects of ERD/ERS in the context of brain–computer interface (BCI) developments. Progress in brain research, 159, 433-437.
Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P., Zuiani, C., . . . Di Prampero, P. E. (1996). Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. Journal of Neuroscience, 16(23), 7688-7698.
Ruffini, G., Dunne, S., Fuentemilla, L., Grau, C., Farres, E., Marco-Pallarés, J., . . . Silva, S. (2008). First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensors and Actuators A: Physical, 144(2), 275-279.
Salmelin, R., & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalography and clinical neurophysiology, 91(4), 237-248.
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45(12), 2802-2810.
Smith, M. M., Weaver, K. E., Grabowski, T. J., Rao, R. P., & Darvas, F. (2014). Non-invasive detection of high gamma band activity during motor imagery. Frontiers in human neuroscience, 8, 817.
Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. L. (2004). Fine modulation in network activation during motor execution and motor imagery. Cerebral cortex, 14(11), 1246-1255.
Stevens, J. A., & Stoykov, M. E. P. (2003). Using Motor Imagery in the Rehabilitation of Hemiparesis 1. Archives of physical medicine and rehabilitation, 84(7), 1090-1092.
Sun, G., Hu, J., & Wu, G. (2010). A novel frequency band selection method for common spatial pattern in motor imagery based brain computer interface. Paper presented at the The 2010 International Joint Conference on Neural Networks (IJCNN).
Thomas, K. P., Guan, C., Lau, C. T., Vinod, A. P., & Ang, K. K. (2009). A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Transactions on Biomedical Engineering, 56(11), 2730-2733.
Thompson, P. M., Cannon, T. D., Narr, K. L., Van Erp, T., Poutanen, V.-P., Huttunen, M., . . . Khaledy, M. (2001). Genetic influences on brain structure. Nature neuroscience, 4(12), 1253.
Van Gerven, M., & Jensen, O. (2009). Attention modulations of posterior alpha as a control signal for two-dimensional brain–computer interfaces. Journal of neuroscience methods, 179(1), 78-84.
Wang, L., Zhang, J., Zhang, Y., Sang, L., Yan, R., Liu, C., & Qiu, M. (2016). Motor cortex activation during motor imagery of the upper limbs in stroke patients. Digital Medicine, 2(2), 72.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767-791.
Yang, H., Sakhavi, S., Ang, K. K., & Guan, C. (2015). On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. Paper presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Zander, T. O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., . . . Nijboer, F. (2011). A dry EEG-system for scientific research and brain–computer interfaces. Frontiers in neuroscience, 5, 53.
指導教授 段正仁(Jeng-Ren Duann) 審核日期 2019-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明