博碩士論文 106826007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.234.143.26
姓名 方培倫(Pei-Luen Fang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 泌尿道上皮癌相關的miRNAs在膀胱癌之研究
(Study of urothelial carcinoma-related miRNAs in bladder cancer)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究黑色素瘤細胞中 miR-524-5p 及 miR-596 的機制及功能★ 研究牛樟芝萃取物 CCM111 的作用機制
★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 在泌尿系統中,泌尿道上皮癌(Urothelial carcinoma, UC)是一種常見的惡性疾病,由病變的泌尿上皮所衍生而成,過去又稱作移行上皮細胞癌,通常伴隨著較差的預後,且有高達90%的膀胱癌(Bladder cancer, BC)病患都是泌尿道上皮癌患者。一般來說,泌尿道上皮癌發生在男性身上的機率較女性高,在年長者中機率較年輕人高。在台灣的病患中,泌尿道上皮癌也是最常見的泌尿道腫瘤,然而泌尿道上皮癌卻很難在早期被發現。經統計發現,慢性腎臟病人患有泌尿道上皮癌的機率是一般人的七倍;洗腎病人患有泌尿道上皮癌的機率是一般人的兩、三百倍。
在我們實驗室先前的研究結果指出,在慢性腎臟病的患者和同時患有慢性腎臟病、泌尿道上皮癌的患者中,以及洗腎病人和患有泌尿道上皮癌的洗腎病人中,有一些miRNA的表達有顯著差異,我們將這些miRNA作為接下來進行研究的候選miRNA共八個。
首先,從ArrayExpress數據庫中搜尋包含miRNA表現量和存活率且與膀胱癌相關的數據集,再透過預測網站預測miRNA可能的標靶基因。經分析後,我們發現只有一個候選miRNA的表現量高低對BC病患的存活有顯著影響,miR-19b-1-5p表現量較高的病患存活率較佳,可能扮演抑制腫瘤的腳色。此外,透過miRNA可能標靶基因的表現量高低分群,發現其中四個miRNA標靶基因的表現量高低對於病患存活率有顯著差異的影響,其中包括miR-19b-1-5p的標靶基因EDN1基因。
再者,我們為了調查候選miRNA對BC的影響,因此對兩株膀胱癌細胞株 (RT4, J82) 進行轉染,發現當候選miRNA過度表達時,J82和RT4細胞的生長速率沒有明顯下降,但在過度表達miR-19a-5p和miR-155-5p時,J82細胞群體數量顯著減少。另外,我們也觀察到當miR-150-5p過度表達時,會抑制J82細胞的遷移爬行能力;當miR-19a-5p、miR-30a-5p、miR-155-5p過度表達時,會抑制J82細胞的侵襲能力。這些結果說明候選miRNA可能會參與抑癌作用,但miR-19b-1-5p並不會抑制腫瘤的細胞增生、爬行與侵襲。
最後,為了探討survival和functional test結果不同的原因,我們透過GEO數據庫和RT-qPCR的方法調查候選miRNA在病人血清和細胞株中的表現,發現大部分的候選miRNA在BC有較高的表現,說明了UC相關的miRNA可能參與致癌作用。總而言之,這些miRNA在BC中扮演重要的腳色,但在不同的樣本中為何有不同的表現,這點會再進一步調查。
摘要(英) Bladder cancer (BC) is a common malignant disease with poor prognosis in urinary system, which occurs in men more often than women and usually affects older adults. About 90% of bladder cancer is urothelial carcinoma (UC) which is known as transitional cell carcinoma (TCC) previously. UC is the most common urinary tract tumor in Taiwan patients. However, it is hard to be diagnosed at early stage. In addition, it has been found that the risk of developing UC in chronic kidney disease (CKD) patients is seven times higher than in normal people and the risk of developing UC in hemodialysis (HD) patients is 200-300 times higher than in normal people.
Our previous data showed that the expression of several miRNAs in urine and plasma were significant different between CKD patients and CKD patients with UC, or between HD patients and HD patients with UC. We chose these miRNAs as our candidate miRNAs to study their roles in BC.
Firstly, we analyzed the data of candidate miRNAs from ArrayExpress database and predicted the targets from four websites. Then, we obtained the survival rate curves of patients. The results showed that only the expression of miR-19b-1-5p significantly regulate survival of BC patients. Patients with high expression of miR-19b-1-5p had significantly longer overall survival than those with low expression. miR-19b-1-5p might act as a tumor suppressor. The expression of four miRNAs target genes significantly regulate survival of BC patients. Most interestingly, miR-19b-1-5p appeared to target EDN1 gene to have an impact on overall survival in BC patients.
Furthermore, we transfected negative control (NC) or candidate miRNA mimics in two BC cells (J82 and RT4) in order to know the function of these miRNAs in BC. We found that overexpression of candidate miRNAs could not significantly inhibit cell proliferation in J82 and RT4 cells. But, overexpression of miR-19a-5p and miR-155-5p could significantly decrease cell colonies in J82 cells. We also observed that overexpression of miR-150-5p could inhibit migration in J82 cells and overexpression of miR-19a-5p, miR-30a-5p, and miR-155-5p could inhibit invasion in J82 cells. The data indicated that these miRNAs might be associated with BC anti-carcinogenesis, but overexpression of miR-19b-1-5p did not inhibit cell proliferation, colony formation, migration and invasion.
Finally, because of different results from survival curves and functional tests, we investigated the expression of candidate miRNAs in patients’ serum and cells through GEO database and RT-qPCR analysis. We found that almost of candidate miRNAs have higher expression in BC. The data might indicate that UC-related miRNAs were involved in BC carcinogenesis, and we will further investigate the reasons for different results.
關鍵字(中) ★ 泌尿道上皮癌
★ 膀胱癌
關鍵字(英) ★ miRNA
★ urothelial carcinoma
★ bladder cancer
論文目次 摘要 v
Abstract vii
致謝 ix
目錄 xi
List of figures and table xiii
Abbreviation list xiv
I. Introduction 1
1. Urothelial carcinoma (UC) 1
1.1 Epidemiology 1
1.2 Etiology 2
1.3 Treatment 2
2. miRNA 2
2.1 Biogenesis and mechanism of miRNAs 2
2.2 Mechanisms of miRNA regulation 3
2.3 miRNA dysregulation in cancer 4
2.4 miRNA application in cancer 5
3. Purpose and significance 6
3.1 To investigate the functions of candidate miRNAs in bladder cancer 6
II. Materials and Methods 7
1. Materials 7
1.1 Cell lines 7
1.2 microRNA (miRNA) mimics 7
1.3 Reagents 8
2. Methods 8
2.1 RNA extraction 8
2.2 Real-time qRT-PCR 8
2.3 miRNA mimic transfection 9
2.4 Cell proliferation assay (Alamar blue assay) 9
2.5 Cell proliferation assay (Colony formation assay) 9
2.6 Transwell cell migration assay 10
2.7 Transwell cell invasion assay 10
2.8 GEO database analysis 10
2.9 Survival curve analysis 11
2.10 Target prediction analysis 11
2.11 Statistical analysis 11
2.12 Cell migration-TrackMate analysis 11
III. Result 13
1. The expression of candidate miRNAs in bladder cancer is associated with overall survival of patients 13
2. The expression of target genes in bladder cancer is associated with overall survival of patients 13
3. Candidate miRNAs cannot significantly regulate cell proliferation in bladder cancer
Cells 14
4. Candidate miRNAs regulate cell migration and invasion in bladder cancer cells 15
5. Candidate miRNAs regulate cell migration by TrackMate analysis 16
6. The Expression of candidate miRNAs in bladder cancer 16
7. Candidate miRNAs were regulated in bladder cancer cell lines 16
IV. Conclusion and discussion 18
1. Expression of candidate miRNAs and their target genes are correlated with overall survival of bladder cancer patients 18
2. Function of candidate miRNAs in bladder cancer cells 18
3. Expression of candidate miRNAs in patient serum and bladder cancer cell 18
4. Role of candidate miRNAs in bladder cancer 19
5. Investigation of miR-17-92 cluster 20
6. Future aspect 20
V. References 21
參考文獻 1. Munoz JJ, Ellison LM. Upper tract urothelial neoplasms: incidence and survival during the last 2 decades. J Urol 2000 Nov;164(5):1523-5.
2. Miyazaki, J., & Nishiyama, H. (2017). Epidemiology of urothelial carcinoma. International Journal of Urology, 24(10), 730–734.
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018 Jan;68(1):7-30.
4. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol. 2017 Jan; 71(1):96-108.
5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69:7.
6. Marcos-Gragera R, Mallone S, Kiemeney LA, et al. Urinary tract cancer survival in Europe 1999-2007: Results of the population-based study. EUROCARE-5. Eur J Cancer 2015.
7. Yii‐Her Chou M.D., Ph.D. Chun‐Hsiung Huang M.D., Ph.D. Unusual clinical presentation of upper urothelial carcinoma in Taiwan. Cancer. 1999 Mar 15;85(6):1342-4.
8. Yang MH, Chen KK, Yen CC et al. . Unusually high incidence of upper urinary tract urothelial carcinoma in Taiwan. Urology 2002;59:681–7.
9. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:5–29.
10. Bladder cancer risk factors. Bladder Cancer Risk Factors. http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-risk-factors.
11. Chen CY, Liao YM, Tsai WM et al. . Upper urinary tract urothelial carcinoma in eastern Taiwan: high proportion among all urothelial carcinomas and correlation with chronic kidney disease. J Formos Med Assoc 2007;106:992–8.
12. Chen CH, Dickman KG, Moriya M et al. . Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci USA 2012;109:8241–6.
13. Wang SM, Lai MN, Wei A et al. . Increased risk of urinary tract cancer in ESRD patients associated with usage of Chinese herbal products suspected of containing aristolochic acid. PLoS One 2014;9:e105218.
14. Bellmunt J, Petrylak DP. New therapeutic challenges in advanced bladder cancer. Semin Oncol. 2012 Oct; 39(5):598-607.
15. Farina MS, Lundgren KT, Bellmunt J. Immunotherapy in Urothelial Cancer: Recent Results and Future Perspectives. Drugs. 2017 Jul; 77(10):1077-1089.
16. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3; 75(5):843-54.
17. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993 Dec 3; 75(5):855-62.
18. Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27.
19. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6.
20. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
21. Hammond, S.M., et al., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000. 404(6775): p. 293-6.
22. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011 Feb; 12(2):99-110.
23. Ipsaro JJ, Joshua-Tor L. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Struct Mol Biol. 2015 Jan; 22(1):20-8.
24. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
25. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
26. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): p. 522-31.
27. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007 Jun 8; 26(5):745-52.
28. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature. 2007 Jun 28; 447(7148):1130-4.
29. Kosaka, N., H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 2010. 101(10): p. 2087-92.
30. Zhang, Y., P. Yang, and X.F. Wang, Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol, 2014. 24(3): p. 153-60.
31. Kosaka, N., H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 2010. 101(10): p. 2087-92.
32. Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med. 2013; 5(12):111.
33. Sun YF, Leu JD, Chen SM, Lin IF, Lee YJ. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer. BMC Cancer. 2009 Jan 13; 9():13.
34. Wee EJ, Peters K, Nair SS, Hulf T, Stein S, Wagner S, Bailey P, Lee SY, Qu WJ, Brewster B, French JD, Dobrovic A, Francis GD, Clark SJ, Brown MA. Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer. Oncogene. 2012 Sep 20; 31(38):4182-95.
35. Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL, Piccart M, Sotiriou C. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011; 6(6):e20980.
36. Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, Liao Y, Du J. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer. 2013 Feb; 49(3):604-15.
37. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005 Mar 8; 102(10):3627-32.
38. Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X, Wang L. Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. Am J Pathol. 2012 Jun; 180(6):2440-51.
39. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014 Apr; 259(4):735-43.
40. Schopman NC, Heynen S, Haasnoot J, Berkhout B. A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. RNA Biol. 2010 Sep-Oct;7(5):573-6. doi: 10.4161/rna.7.4.13141. Epub 2010 Sep 1.
41. Yougang Feng, Jun Liu, Yongming Kang, Yue He, Bo Liang, Ping Yang, and Zhou Yu. miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Cancer Res. 2014; 33(1): 67.
42. Zhang C, Ma X, Du J, Yao Z, Shi T, Ai Q, Chen X, Zhang Z, Zhang X, Yao X. MicroRNA-30a as a prognostic factor in urothelial carcinoma of bladder inhibits cellular malignancy by antagonising Notch1. BJU Int. 2016 Oct;118(4):578-89. doi: 10.1111/bju.13407.
43. Yueh-Hua Chung, Sung-Chou Li, Ying-Hsien Kao, Hao-Lun Luo, Yuan-Tso Cheng, Pey-Ru Lin, Ming-Hong Tai, Po-Hui Chiang. MiR-30a-5p Inhibits Epithelial-to-Mesenchymal Transition and Upregulates Expression of Tight Junction Protein Claudin-5 in Human Upper Tract Urothelial Carcinoma Cells. Int J Mol Sci. 2017 Aug; 18(8): 1826.
44. Ueno K, Hirata H, Majid S, Yamamura S, Shahryari V, Tabatabai ZL, Hinoda Y, Dahiya R. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating RhoC and FZD4. Mol Cancer Ther. 2012 Jan;11(1):244-53. doi: 10.1158/1535-7163.MCT-11-0592.
45. Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA. Cell migration in tumors. Curr Opin Cell Biol. 2005 Oct;17(5):559-64.
46. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013 Dec;20(12):1603-14.
47. Gijs van Haaften and Reuven Agami. Tumorigenicity of the miR-17-92 cluster distilled. Genes Dev. 2010 Jan 1; 24(1): 1–4.
48. Charles E. Gast, Alain D. Silk. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 2018 Sep 12;4(9):eaat7828. doi: 10.1126
指導教授 馬念涵(Nianhan Ma) 審核日期 2019-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明