博碩士論文 106827001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.229.142.91
姓名 高煜翔(Yu-Shiang Gao)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 設計及製作可攜式非侵入性心搏輸出量監測系統
(Design and Implementation of a Portable Impedance Cardiography Measurement System for Noninvasive Cardiac Output Monitoring)
相關論文
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號
★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後★ 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統
★ 反覆編曲結構音樂對人體生理訊號之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現有的心搏輸出量(Cardiac Output)監測儀器及方法中,除了應用侵入式的方法會有感染的風險外,無法達到連續量測的功能或是需要專業人員的操作才能施行。而現有的市售非侵入式心搏輸出量監測系統大都具有體積龐大、笨重及造價昂貴等缺點,也因為技術及商業機密等緣故不易普及於醫學及學術研究單位。
因此本研究提出一款可攜式非侵入性心搏輸出量監測系統之設計,主要由混合訊號微處理器(Microprocessor , MCU)控制電壓訊號產生器電路(Function Generator)、電壓控制電流源(Voltage Control Current Source) 輸出50kHz/4mA peak to peak正弦波定電流源。經過儀表放大器(Instrumentation Amplifier)、主動濾波器(Active Filter)及震幅調變解調器(Amplitude Modulation Demodulator)解析訊號後經由微處理器類比數位轉換器(Analog/Digital Convertor)收錄並傳送到電腦搭配MATLAB進行計算及分析。
針對前端類比電路利用NI USB-6255 DAQ儀器及LabVIEW驗證設計及訊號正確性後,接著搭配ATmega328P、AD9833及SD卡模組等數位電路系統。採用生物電阻抗八點量測法實際量測胸腔皮膚阻抗(Chest Skin Impedance , IMP)訊號及第二導程心電圖(Electrocardiogram, ECG)訊號,透過數位電路取樣回傳後利用MATLAB擷取0.7~7Hz皮膚阻抗訊號微分後得到阻抗心動描記術(Impedance Cardiography , ICG)訊號,最後抓取心電圖Q點對齊阻抗心動描記術C、B、X點特徵值後計算出射血前期(Pre-Ejection-Period , PEP)及左心室射血時間(Left Ventricular Ejection Time , LVET)等數據,驗證系統可用性。
本系統除了利用非侵入性量測方法避免感染風險、容易操作的自動量測及監測等優點外,還有體積小、重量輕、成本低急便於攜帶等優點。未來之應用不僅僅只限於大型醫院或加護病房等機構,也可普及於小型醫療機構、戶外急救單位甚至是個人家庭中,實現即時且普及的生理訊號監測。
摘要(英) In the existing Cardiac Output monitoring instruments and methods, in addition to the risk of infection by applying an invasive method, the continuous measurement function cannot be achieved or a professional operation is required. Most of the existing commercially available non-invasive cardiac output monitoring systems have the disadvantages of being bulky, cumbersome and expensive, and are not easily popularized in medical and academic research units due to technical and commercial secrets.
Therefore, this study proposes a portable non-invasive cardiac output monitoring system design, mainly controlled by a mixed signal Microprocessor (MCU) voltage Function Generator circuit, Voltage Control Current Source outputs a 50kHz/4mApeak to peak sine wave constant current source. After the Instrumentation Amplifier, Active Filter and Amplitude Modulation Demodulator analytic signal, it is recorded and transmitted to the computer via a microprocessor Analog/Digital Convertor. Computation and analysis with MATLAB.
For the front-end analog circuit, the NI USB-6255 DAQ instrument and LabVIEW are used to verify the design and signal correctness, and then with the digital system such as ATmega328P, AD9833 and SD card module. The bioelectrical impedance eight-point measurement method is used to actually measure the Chest Skin Impedance (IMP) signal and the second lead Electrocardiogram (ECG) signal. After sampling and returning through the digital circuit, the MATLAB is used to extract 0.7-7 Hz. After the skin impedance signal is differentiated, the Impedance Cardiography (ICG) signal is obtained. Finally, the ECG Q-point alignment Impedance Cardiography C, B, and X point eigenvalues are acquired to calculate the Pre-Ejection Period (PEP). And data such as Left Ventricular Ejection Time (LVET) to verify system availability.
In addition to the advantages of non-invasive measurement methods to avoid infection risk, easy operation and automatic measurement and monitoring, the system has the advantages of small size, light weight, low cost and easy to carry. Future applications are not limited to large hospitals or intensive care units, but also to small medical institutions, outdoor emergency units, and even individual households to achieve immediate and universal physiological signal monitoring.
關鍵字(中) ★ 非侵入性
★ 心搏輸出量
★ 阻抗心動描記術
關鍵字(英) ★ non-invasive
★ cardiac output
★ Impedance Cardiography
論文目次 摘要……………………………………………………………………………………………..i
Abstract………………………………………………………………….……………………..ii
致謝…………………………………………………………………………………...……….iv
目錄…………………………………………………………………………………….………v
附圖目錄……………………………………………………………………………….…….vii
附表目錄……………………………………………………………………………………….x
第一章 緒論…………………………………………………………………………….….1
1.1 前言………………………………………………………………...………1
1.2 研究動機與目的…………………………………………………………...1
1.3 本文架構………………………………………………………………...…2
第二章 研究原理…………………………………………………………………………..3
2.1 心電圖……………………………………………………………………...3
2.1.1 心電圖原理…………………………………………….….….3
2.1.2 心電圖的訊號………………………………………………...4
2.1.3 心電圖的量測方法…………………………………………...6
2.2 心搏輸出量………………………………………………………………...7
2.2.1 心搏輸出量簡介……………………………………………...7
2.2.2 心搏輸出量的量測方法……………………………………...8
2.2.3 阻抗心動描記術…………………………………………….10
2.2.4 生物電阻抗………………………………………………….12
2.2.5 生物電阻抗的震幅調變………………………………….…15
第三章 研究方法介紹……………………………………………………………………17
3.1 前端類比電路…………………………………………………………….17
3.1.1 定電流訊號發射電路……………………………………….17
3.1.2 訊號接收電路……………………………………………….20
3.1.3 前端濾波電路……………………………………………….24
3.1.4 震幅調變解調電路………………………………………….28
3.1.5 心電圖訊號接收電路……………………………………….33
3.2 數位控制電路…………………………………………………………….35
3.2.1 可程式訊號產生器………………………………………….35
3.2.2 類比數位轉換器…………………………………………….37
3.2.3 資料傳輸…………………………………………………….41
3.3 電腦數據分析…………………………………………………………….44
3.3.1 資料編碼及解碼…………………………………………….44
3.3.2 阻抗心動描記術訊號擷取………………………………….46
3.3.3 心電圖訊號及阻抗心動描記術特徵值抓取……………….48
第四章 實驗結果分析……………………………………………………………………51
4.1 前端類比訊號及接收電路驗證………………………………………….51
4.2 後端數位電路驗證……………………………………………………….56
4.3 全系統驗證及分析……………………………………………………….57
第五章 結論與未來展望…………………………………………………………………60
5.1 結論………………………………………………………………………...60
5.2 未來展望…………………………………………………………………...60
參考文獻……………………………………………………………………………………...61
參考文獻 [1] BEN P M IMHOLZ, GERT A VAN MONTFRANS, JOS J SETTELS GERARD M A VAN DER HOEVEN, JOHN M KAREMAKER, WOUTER WIELING, Continuous non-invasive blood pressure monitoring: reliability of Finapres device during the Valsalva manoeuvre, Cardiovascular Research, Volume 22, Issue 6, June 1988, Pages 390–397, https://doi.org/10.1093/cvr/22.6.390, 01 June 1988
[2] Tibor A. Nappholz, William N. Hursta, Albert K. DawsonBruce M. Steinhaus,Implantable ambulatory electrocardiogram monitor, 1990
[3] Lester A. H. Critchley, Julian A. J. H. Critchley, A Meta-Analysis of Studies Using Bias and Precision Statistics to Compare Cardiac Output Measurement Techniques, Journal of Clinical Monitoring and Computing, February 1999, Volume 15, Issue 2, pp 85–91
[4] William Ganz MD, CSc Roberto Donoso MD, Harold S. Marcus MD, James S. Forrester MD, Harold J.C. Swan MB, PhD, FACC, A new technique for measurement of cardiac output by thermodilution in man, The American Journal of Cardiology, Volume 27, Issue 4, April 1971, Pages 392-396
[5] Joseph T. Doyle, M.D., Joseph S. Wilson, M.D., Charles Lépine, M.D., James V. Warren, M.D., An evaluation of the measurement of the cardiac output and of the so-called pulmonary blood volume by the dye-dilution method, TRANSLATIONAL RESEARCH The Journal of Laboratory and Clinical Medidicine, January 1953Volume 41, Issue 1, Pages 29–39
[6] W. G. Kubicek Ph.D., R. P. Patterson M.E.E., D. A. Witsoe M.E.E., IMPEDANCE CARDIOGRAPHY AS A NONINVASIVE METHOD OF MONITORING CARDIAC FUNCTION AND OTHER PARAMETERS OF THE CARDIOVASCULAR SYSTEM, ANNALS of THE NEW YORK ACADEMY OF SCIENCES, Volume170, Issue2, July 1970, Pages 724-732
[7] H Ihlen, J P Amlie, J Dale, K Forfang, S Nitter-Hauge, J E Otterstad, S Simonsen, E Myhre, Determination of cardiac output by Doppler echocardiography., Br Heart J: first published as 10.1136/hrt.51.1.54 on 1 January 1984.; 51: 54-60
[8] Anantha P. Chandrakasan, William J. Bowhill, Frank Fox, Design of High-Performance Microprocessor Circuits, 1st, Wiley-IEEE Press ©2000, ISBN:078036001X
[9] Aaron S. Tucker ; Robert M. Fox ; Rosalind J. Sadleir, Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation, IEEE Transactions on Biomedical Circuits and Systems ( Volume: 7 , Issue: 1 , Feb. 2013 ), 63-70
[10] Robert C.TalleyMDJerry F.MeyerMDJohn L.McNayMD, Evaluation of the pre-ejection period as an estimate of myocardial contractility in dogs, The American Journal of Cardiology, Volume 27, Issue 4, April 1971, Pages 384-391
[11] Arnold M.WeisslerM.D., Robert G.PeelerM.D., Walter H.RoehllJr.M.D., Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease, American Heart Journal, Volume 62, Issue 3, September 1961, Pages 367-378
[12] J.Malmivuo andR.Plonsey, “Principles and applications of bioelectric and biomagnetic field,” pp. 393–401, 1995.
[13] Bernstein DP, A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. (PMID:3757533), Critical Care Medicine [01 Oct 1986, 14(10):904-909]
[14] Hassan Yazdanian, Amin Mahnam, Mehdi Edrisi, Morteza Abdar Esfahani, Design and Implementation of a Portable Impedance Cardiography System for Noninvasive Stroke Volume Monitoring, Journal of Medical Signals & Sensors, Vol 6 | Issue 1 | Jan‑Mar 2016
[15] Fatimah Lateef MBBS, wee Han Lim MBBS, Venkataraman Anantharaman MBBS, C.S.Lim, Changes in chest electrode impedance, The American Journal of Emergency Medicine, Volume 18, Issue 4, July 2000, Pages 381-384
[16] Kinnen E, Kubicek WG, Hill DW, Turton G (1964a): Thoracic cage impedance measurements: Impedance plethysmographic determination of cardiac output (A comparative study). U.S. Air Force School of Aerospace Medicine, Brooks Air Force Base, Texas SAM-TDR-64:(15) 8.
[17] Kinnen E, Kubicek WG, Hill DW, Turton G (1964b): Thoracic cage impedance measurements: impedance plethysmographic determination of cardiac output (An interpretative study). U.S. Air Force School of Aerospace Medicine, Brooks Air Force Base, Texas SAM-TDR-64:(23) 12.
[18] Kinnen E, Kubicek WG, Hill DW, Turton G (1964c): Thoracic cage impedance measurements, tissue resistivity in vivo and transthoracic impedance at 100 kc. U.S. Air Force School of Aerospace Medicine, Brooks Air Force Base, Texas SAM-TDR-64:(5) 14.
[19] Kubicek WG (1968): Minnesota Impedance Cardiograph Model 303. Instruction Manual, 4 pp. Univ. of Minnesota Press, Minneapolis.
[20] Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966): Development and evaluation of an impedance cardiac output system. Aerospace Med. 37:(12) 1208-12.
[21] Kubicek WG, Patterson RP, Witsoe DA (1970): Impedance cardiography as a non-invasive method for monitoring cardiac function and other parameters of the cardiovascular system. Ann. N.Y. Acad. Sci. 170: 724-32.
[22] Lababidi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM (1971): Evaluation of impedance cardiac output in children. Pediatr. 47:(5) 870-9.
[23] Tanaka K, Kanai H, Nakayama K, Ono N (1970): The impedance of blood: The effects of red cell orientation and its application. Jpn. J. Med. Eng. 8: 436-43.
[24] van de Water JM, Philips PA, Thouin LG, Watanabe LS, Lappen RS (1971): Bioelectric impedance. New developments and clinical application. Arch. Surg. 102:(6) 541-7.
[25] Schwan HP, Kay CF (1957): Capacitive properties of body tissues. Circ. Res. 5:(4) 439-43.
[26] Zhao T (1992): Electrical capacitance of human blood. In Proc. Of the 8th Internat. Conf. Of Electrical Bioimpedance, 1st ed. Vol. 1, ed. T Lahtinen, pp. 185-7, University of Kuopio, Kuopio, Finland.
[27] Ramon Pallas-Areny, John G. Webster, AC Instrumentation Amplifier for Bioimpedance Measurements, IEEE TRANSSACTIONS ON BIOMEDICAL ENGINEERING, VOL.40, NO.8, AUGUST 1993
[28] Mahnam, A., Yazdanian, H., & Mosayebi Samani, M. (2016). Comprehensive study of Howland circuit with non-ideal components to design high performance current pumps. Measurement, 82, 94–104. doi:10.1016/j.measurement.2015.12.044
[29] Hassan Yazdanian, Amin Mahnam, Mehdi Edrisi, Morteza Abdar Esfahani, Design and Implementation of a Portable Impedance Cardiography System for Noninvasive Stroke Volume Monitoring, Journal of Medical Signals & Sensors, Vol 6 | Issue 1 | Jan‑Mar 2016
[30] M.S.J. Steyaert ; W.M.C. Sansen, A micropower low-noise monolithic instrumentation amplifier for medical purposes, IEEE Journal of Solid-State Circuits ( Volume: 22 , Issue: 6 , Dec 1987 ), Page(s): 1163 - 1168
[31] High Speed FET-Input Instrumentation Amplifier. INA111. Burr-Brown Corporation. Mar 1998.
[32] Hiroshi Kurihara, Tadayoshi Katoh, Band-pass filter circuit, 1978
[33] T. Deliyannis, Yichuang Sun, J.K. Fidler, Continuous-Time Active Filter Design, 2019
[34] Frederick O. R. MiesterfeldJohn M. McCambridgeRonald E. FassnachtJerry M. Nasiadka, Serial data bus for serial communication interface (SCI), serial peripheral interface (SPI) and buffered SPI modes of operation, Chrysler Motors Corp Chrysler Corp Siemens VDO Automotive Electronics Corp, 1986
[35] Thane M. LarsonKirk Bresniker, Inter integrated circuit bus router for preventing communication to an unauthorized port, Hewlett Packard Development Co LP, 2003
[36] Martin S. Michael, Universal asynchronous receiver/transmitter, National Semiconductor Corp, 1988
[37] Abdelakram Hafid , Sara Benouar, Malika Kedir–Talha, Farhad Abtahi , Mokhtar Attari, and Fernando Seoane, Senior Member, IEEE, Full Impedance Cardiography measurement device using Raspberry PI3 and System-on-Chip biomedical Instrumentation Solutions, IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 22, NO. 6, NOVEMBER 2018
[38] Gerard Cybulski, Ambulatory Impedance Cardiograph, 2011
指導教授 林澂 審核日期 2019-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明