博碩士論文 106827003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.138.101.95
姓名 張芷茜(Chih-Chien Chang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 重複間斷性Theta爆發刺激對手部運動之腦波的影響
(The effect of repeated iTBS on brain activities during hand movements)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth★ 使用虛擬實境系統誘發事件相關電位P300之研究
★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究★ 使用GPU提升事件相關電位之動態因果模型的運算效能
★ 基於動態因果模型之老化相關的運動網路研究★ 應用腦電圖預測中風病人復健情況
★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響★ 基於虛擬實境復健之中風後運動網路功能性重組研究
★ 應用腦電圖與相關臨床因子預測中風病人復原之研究★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組
★ 以運動指標預測復健成效暨設計復健方針★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Theta 爆發刺激(TBS)是指重複性經顱磁刺激(rTMS)的特定程序被證明為調節神經最有效的方法,而TBS或TMS會引起動作誘發電位(MEPs)振幅的變化。本論文主要研究藉由給予受測者每3分鐘重複3次的重複間段性TBS(repeated- intermittent Theta burst stimulation, repeated-iTBS)刺激左側初級運動皮層(LM1),來探討左側及右側MEPs與大腦震盪的相關性。
共21名健康的受測者參加實驗,每位受測者在repeated-iTBS刺激前後進行右手肩關節前屈(Shoulder flexion)運動並且分別量測腦電波圖(EEG)及左右側MEPs。
結果顯示21名受測者中,有15名受測者的左側MEPs(平均變化= -26.26%; p <0.001)和右側MEPs(平均變化= -19.83%; p = 0.070)均降低,顯示兩邊半球的皮質興奮性降低。repeated-iTBS刺激後,左側M1的beta頻帶(16 Hz ~ 30 Hz之EEG)有顯著的降低,並與左側MEPs在5分鐘時的振幅變化有正相關(r = 0.65;p = 0.014)。而右側M1則增加,立即改變左側MEPs,兩者呈現負相關(r = -0.63,p = 0.01)。除此之外,在右手運動過程中,施打於LM1的repeated-iTBS可以調節受測半球之左側MEPs且間接影響對側,使對側未受刺激半球之右側MEPs亦有變化,分別調節神經網路變化。並且刺激前左右側M1的Beta連結及原有的Beta連結與repeated-iTBS刺激後MEPs的變化有相關。
總而言之,repeated-iTBS可以有效地使受測半球與非受測半球受到抑制改變,且分別調節與左右側MEPs相關的神經網路變化。這些研究結果可以作為repeated-iTBS運用於運動的參考。
摘要(英) The theta burst stimulation (TBS) is a specific protocol for repetitive transcranial magnetic stimulation (rTMS).It has proven to be the most effective protocol to induce the neuroplasticity.TBS or TMS causes changes in the amplitude of motor evoked potentials (MEPs).The main study was to investigate the aftereffects by given to subjects iTBS repeated every 3 minutes for 3 times (repeated-iTBS) over the left primary motor cortex (LM1), and means of the amplitudes of MEPs evoked from the left (LMEPs) and right (RMEPs) M1 and their correlation with the brain oscillation.
21 healthy subjects participated in the experiment. Each subject performed right-hand shoulder flexion and extension action before and after repeated iTBS stimulation with 2 sessions, and measured the electroencephalogram (EEG) and MEPs.
The results showed that 15 of 21 subjects had decreased left MEPs (mean change = -26.26%; p <0.001) and right MEPs (mean change = -19.83%; p = 0.070), meaning both hemispheres cortical excitability is reduced. After repeated-iTBS, the beta activities (16 Hz ~ 30 Hz) of the LM1 were significantly reduced, and were positively correlated with the amplitude change of the left MEPs at 5 minutes (r = 0.65; p = 0.014). Also, the RM1 increased, and the left MEPs were immediately changed in a negative correlation (r = -0.63, p = 0.01). In addition, during the right-hand movement, repeated-iTBS over LM1 induce the left MEPs of the conditioned hemisphere and indirectly affect the opposite side, also change the right MEPs of the unconditioned hemisphere, and respectively modulate the neuronal network changes in both hemispheres. Last, MEPs changes after repeated-iTBS were correlated with the pre-LM1 and pre-RM1 beta power. The beta were correlated with intrinsic connection strengths.
In summary, repeated-iTBS can effectively change the conditioned hemisphere, unconditioned hemisphere, and neural network which was related to MEPs. These results can be used as a reference for repeated-iTBS in motor cortox.
關鍵字(中) ★ 腦電波圖
★ 動作誘發電位
★ 可塑性
★ Theta 爆發刺激
關鍵字(英) ★ EEG
★ MEPs
★ plasticity
★ transcranial magnetic stimulation
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 腦電波與臨床研究 3
2.1.1 腦電波圖與國際10-20系統 3
2.1.2 腦電波圖之頻帶 5
2.2 經顱磁刺激(Transcranial magnetic stimulation, TMS) 5
2.3 間斷性Theta爆發刺激(intermittent Theta burst stimulation, iTBS) 6
2.4 動作誘發電位(Motor evoke potential, MEP) 7
2.5 經顱磁刺激與運動皮質研究 10
第三章 實驗設計與研究方法 12
3.1 受測者條件 12
3.2 實驗設備 13
3.3 實驗流程 14
3.4 腦波實驗 16
3.5 研究資料處理 16
3.6 動態因果模型(Dynamic causal modelling, DCM) 17
3.6.1 動態因果模型建構 20
3.6.2 DCM特徵分析 22
第四章 研究結果 24
4.1 運動神經誘發電位(MEPs)統計結果 24
4.2 初級運動區腦波統計結果 28
4.3 MEPs與初級運動區之Beta頻帶之間的相關性 33
4.4 初級運動皮質(M1)之動態因果模型結果 44
4.5 施打repeated-iTBS前後顯著相關連結 49
4.6 腦內網路連結與MEP之相關性 52
第五章 討論與結論 63
5.1 repeated-iTBS的抑制效果與對神經所造成的效果 63
5.2 施打於LM1的repeated-iTBS可以調節受測半球且對未受測半球亦有調節 63
5.3 原有的Beta連結會影響受repeated-iTBS刺激後MEPs的變化 65
5.4 MEP測量位置與EEG實驗動作之大腦運動控制非同一區塊 65
5.5 結論 66
第六章 未來展望 69
參考文獻 70
附件 77
參考文獻 1 Ying-Zu Huang, Mark J. Edwards, Elisabeth Rounis, Kailash P. Bhatia, and John C. Rothwell, Theta burst stimulation of the human motor cortex. Neuron, 2005. 45(2): p. 201-206.
2 Astrup, J., G. Blennow, and B. Nilsson, Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizures. Brain research, 1979. 177(1): p. 115-126.
3 Buzsaki, G. and A. Draguhn, Neuronal oscillations in cortical networks. Science, 2004. 304(5679): p. 1926-9.
4 Vincenzo Rizzo, Hartwig R. Siebner, Nicola Modugno, Alessandra Pesenti, Alexander Munchau, Willibald Gerschlager, Ruth M. Webb and John C. Rothwell, Shaping the excitability of human motor cortex with premotor rTMS, J Physiol, 2004. Jan 15; 554(Pt 2): 483–495.
5 Sanei, S. and J.A. Chambers, EEG signal processing. 2013: John Wiley & Sons.
6 Jaakko Malmivuo, Robert Plonsey, Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetis Fields, Oxford University Press, 1995, pp.247-264
7 Tecchio, F., et al., High-gamma band activity of primary hand cortical areas: A sensorimotor feedback efficiency index. NeuroImage, 2008. 40(1): p. 256-264.
8 Barker, A.T. and I. Freeston, Transcranial magnetic stimulation. Scholarpedia, 2007. 2(10): p. 2936.
9 Rossi, S., et al., Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology, 2009. 120(12): p. 2008-2039.
10 Friston, K. and W. Penny, Post hoc Bayesian model selection. NeuroImage, 2011. 56(4): p. 2089-99.
11 Kobayashi, M., et al., Transcranial magnetic stimulation in neurology. The Lancet Neurology, 2003. 2(3): p. 145–156.
12 Huang, Y.Z. and J.C. Rothwell, The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clinical Neurophysiology, 2004. 115(5): p. 1069-1075.
13 Hamada, M., et al., The Role of Interneuron Networks in Driving Human Motor Cortical Plasticity. Cerebral Cortex, 2013. 23(7): p. 1593-1605.
14 Lee, J.H., et al., Factors associated with upper extremity motor recovery after repetitive transcranial magnetic stimulation in stroke patients. Ann Rehabil Med, 2015. 39(2): p. 268-76.
15 Gianelli, C. and R. Dalla Volta, Does listening to action-related sentences modulate the activity of the motor system? Replication of a combined TMS and behavioral study. Frontiers in psychology, 2014. 5.
16 Cortes, M., R.M. Black-Schaffer, and D.J. Edwards, Transcranial Magnetic Stimulation as an Investigative Tool for Motor Dysfunction and Recovery in Stroke: An Overview for Neurorehabilitation Clinicians. Neuromodulation, 2012. 15(4): p. 316-325.
17 Cárdenas-Morales, L., Nowak, D. A., Kammer, T., Wolf, R. C., & Schönfeldt-Lecuona, C., Mechanisms and Applications of Theta-burst rTMS on the Human Motor Cortex. Brain Topography,2009. 22(4), 294–306.
18 Brasil-Neto, J.P., et al., Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol, 1992. 9(1): p. 132-6.
19 Mills, K.R., S.J. Boniface, and M. Schubert, Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol, 1992. 85(1): p. 17-21.
20 Kujirai, T., et al., Corticocortical inhibition in human motor cortex. J Physiol, 1993. 471: p. 501-19.
21 Matsunaga, K., et al., Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. J Physiol, 2005. 562(Pt 1): p. 295-306.
22 Chen, C.C., S.J. Kiebel, and K.J. Friston, Dynamic causal modelling of induced responses. NeuroImage, 2008. 41(4): p. 1293-312.
23 林宥辰, 基於虛擬實境復健之中風後運動網路功能性重組研究; Cerebral re-organization of motor networks in response to VR based rehabilitation after stroke. 2014.
24 邱昱豪, 用動態因果模型分析間斷性Theta爆發刺激對上肢運動神經網路的調變; Using dynamic casual model to analysis the modulation of upper motor neural network by iTBS. 2017
25 Ziemann, U., Rothwell, J. C., & Ridding, M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. The Journal of Physiology, 1996. 496(3), p. 873–881.
26 Friston, K.J. and K.E. Stephan, Free-energy and the brain. Synthese, 2007. 159(3): p. 417-458.
27 涂安廷, 應用腦電圖預測中風病人復健情況; Using EEG to predict the outcome of stroke rehabilitation. 2014.
28 Friston, K.J., Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 1994. 2(1-2): p. 56-78.
29 Aertsen, A. and H. Preissl, Dynamics of activity and connectivity in physiological neuronal networks. Nonlinear dynamics and neuronal networks, 1991. 2: p. 281-301.
30 David, O., J.M. Kilner, and K.J. Friston, Mechanisms of evoked and induced responses in MEG/EEG. NeuroImage, 2006. 31(4): p. 1580-1591.
31 Chen, C.-C., Kiebel, S. J., Kilner, J. M., Ward, N. S., Stephan, K. E., Wang, W.-J., & Friston, K. J., A dynamic causal model for evoked and induced responses. NeuroImage, 2012. 59(1), 340–348.
32 Nettekoven, C., et al., Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system. J Neurosci, 2014. 34(20): p. 6849-59.
33 Nettekoven, C., Volz, L. J., Leimbach, M., Pool, E. M., Rehme, A. K., Eickhoff, S. B., Fink G. R. Grefkes, C., Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. NeuroImage, 2015. 118, 209–218.
34 Ragert, P., Camus, M., Vandermeeren, Y., Dimyan, M. A., & Cohen, L. G., Modulation of Effects of Intermittent Theta Burst Stimulation Applied Over Primary Motor Cortex (M1) by Conditioning Stimulation of the Opposite M1. Journal of Neurophysiology, 2009. 102(2), 766–773.
35 Cárdenas-Morales, L., Grön, G., & Kammer, T., Exploring the after-effects of theta burst magnetic stimulation on the human motor cortex: A functional imaging study. Human Brain Mapping, 2011. 32(11), 1948–1960.
36 Cárdenas-Morales, L., Volz, L. J., Michely, J., Rehme, A. K., Pool, E.-M., Nettekoven, C., Eickhoff S. B., Fink G. R. , Grefkes, C., Network Connectivity and Individual Responses to Brain Stimulation in the Human Motor System. Cerebral Cortex, 2014. 24(7), 1697–1707.
37 Hinder, M.R., et al., Inter- and Intra-individual variability following intermittent theta burst stimulation: implications for rehabilitation and recovery. Brain Stimul, 2014. 7(3): p. 365-71.
38 Kojima, S., et al., Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation. BMC Neurosci, 2013. 14: p. 43.
39 Ackerley, S.J., et al., Combining theta burst stimulation with training after subcortical stroke. Stroke, 2010. 41(7): p. 1568-72.
40 Schlaghecken, F., et al., Slow frequency repetitive transcranial magnetic stimulation affects reaction times, but not priming effects, in a masked prime task. Clinical Neurophysiology, 2003. 114(7): p. 1272-1277.
41 Stinear, C.M., et al., Repetitive stimulation of premotor cortex affects primary motor cortex excitability and movement preparation. Brain Stimulation, 2009. 2(3): p. 152-162.
42 Luppino, G., et al., Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol, 1993. 338(1): p. 114-40.
43 Hamada, M., et al., Primary motor cortical metaplasticity induced by priming over the supplementary motor area. Journal of Physiology-London, 2009. 587(20): p. 4845-4862.
44 Arai, N., et al., Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study. Experimental Brain Research, 2012. 220(1): p. 79-87.
45 Huang, Y.Z., The modulation of cortical motor circuits and spinal reflexes using theta burst stimulation in healthy and dystonic subjects. Restor Neurol Neurosci, 2010. 28(4): p. 449-57.
46 Andres, F.G., et al., Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain, 1999. 122 ( Pt 5): p. 855-70.
47 Ohara, S., et al., Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain, 2000. 123 ( Pt 6): p. 1203-15.
48 Ikeda, A., et al., Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. Brain, 1999. 122 ( Pt 5): p. 915-31.
49 Downar, J., et al., A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci, 2000. 3(3): p. 277-83.
50 Deecke, L., Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp, 1987. 132: p. 231-50.
51 Foltys, H., et al., Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clin Neurophysiol, 2003. 114(12): p. 2404-15.
52 Chen, C.C., et al., EEG-based motor network biomarkers for identifying target patients with stroke for upper limb rehabilitation and its construct validity. PLoS One, 2017. 12(6): p. e0178822.
53 Diekhoff-Krebs, S., et al., Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients. Neuroimage Clin, 2017. 15: p. 559-571.
54 Sanei, S. and J.A. Chambers, EEG signal processing. 2013: John Wiley & Sons.
55 王建軍(主譯), 神經科學-探索腦(美) 第二版 中文版; Neuroscience: Exploring the Brain second edition (Mark F. Bear, Barry W. Connors, Michael A. Paradiso), 高等教育出版社, 2004 p 450 (Lippincott Williams & Wilkins; 2nd, 2001)
56 Yilmaz, U., Walter, S., Körner, H., Papanagiotou, P., Roth, C., Simgen, A., Behnke S., Ragoschke-Schumm A., Fassbender K., Reith, W., Peri-interventional Subarachnoid Hemorrhage During Mechanical Thrombectomy with stent retrievers in Acute Stroke: A Retrospective Case-Control Study. Clinical Neuroradiology, 2014, 25(2), 173–176.
57 Fisher C.M., Concerning the mechanism of recovery in stroke hemiplegia. Can J Neurol Sci, 1992. Feb;19(1):57-63.
58 Liu, Y., & Rouiller, E. M., Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Experimental Brain Research, 1999. 128(1-2), 149–159.
59 Kurata, K., & Hoshi, E., Reacquisition Deficits in Prism Adaptation After Muscimol Microinjection Into the Ventral Premotor Cortex of Monkeys. Journal of Neurophysiology, 1999. 81(4), 1927–1938.
60 Fridman, E. A., Hanakawa T., Chung M., Hummel F., Leiguarda R.C., Cohen L.G., Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004. 127(4), 747–758.
指導教授 陳純娟 審核日期 2020-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明