博碩士論文 106827004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.236.142.143
姓名 宋怡萱(Yi-Syuan Sung)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統
(Implementation of a Digital Otoscope with Deep Learning for an Automatic Tracking Function in Otitis Media Assisted System)
相關論文
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 設計及製作可攜式非侵入性心搏輸出量監測系統
★ 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後
★ 反覆編曲結構音樂對人體生理訊號之影響★ 設計具低功耗無線傳輸及結合人工智慧判讀之長時間聽診監測系統
★ 實踐經驗模態分解於高度非穩態生理訊號之訊號特徵擷取★ Exploring Beat-to-Beat Photoplethysmography Features at the Upper and Lower Extremities as Potential Biomarkers for Early Diagnosis of Peripheral Arterial Occlusive Disease: A Comparative study with Ultrasound Doppler and Ankle-Brachial Index
★ 應用稀疏時頻表現式解析生理系統間非線性耦合機轉★ 基於功能性近紅外光腦光譜與腦電圖發展多模態腦活動無線監測系統
★ 脂質奈米顆粒在mRNA疫苗技術應用發展綜述★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
★ 探討以非侵入方式的影像心衝擊圖形態特徵來評估左心室射血分數 : 基於數學模型與臨床驗證的初步研究★ 發展可用於肺部疾病患者呼吸音監測之高解析加速度陣列感測器
★ 以光體積變化描記儀作為男性勃起功能及陰莖血液動力學及性功能客觀指標之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中耳炎是一種在兒童裡普遍存在的疾病,通常是感冒引起的併發症。根據流行病學研究統計,高達80%的兒童在5歲之前患有中耳炎,其中有46%得過三次以上的急性中耳炎,所以在中耳炎的診斷上就非常具有挑戰性。然而,父母容易把中耳炎症狀與普通感冒相互混淆,沒有及時做好處理,而耽誤治療的黃金時間。如果這時家中具有耳鏡輔助診斷系統的設備就可以及時觀察出耳膜是否有異狀,及時去做治療。
本研究提出了一種半自動耳膜追蹤演算法系統,結合經認證過的數位耳鏡應用於居家照護的環境中,並考量到非專業用戶使用者並沒有相關的醫學背景和缺乏解剖學相關知識,藉由使用者引導介面這套系統可以引導使用者拍攝出完整耳膜。我們描繪出耳膜輪廓示意圖讓使用者依據畫面上的示意圖得知耳膜的形狀,增加箭頭引導標誌讓使用者根據箭頭指向的方向去做移動,最後再根據耳膜面積占總畫面的面積大小,達到一定比例時,就可以捕獲出完整的耳膜。我們的結果表明,半自動耳膜追蹤演算法可以抓出耳膜影像具有90.43%準確度。其中,正常耳膜影像抓出耳膜影像的準確度為95.66%,而非正常影像包括急性中耳炎(AOM) 抓到耳膜影像的準確度也有84.92%,而慢性中耳炎(COM)和積液性中耳炎(OME) 抓到耳膜影像的準確度也都分別有87.88%和84.11%。在後端影像辨識分析上,我們也增加深度學習的概念使用FCN-AlexNet和FCN-Vgg16兩種語義分割模組,去優化耳膜影像切割技術,讓電腦自動學習得到最佳的耳膜影像,以便於特徵提取對耳膜進行自動分類。
將智慧耳鏡結合手機APP設計一個耳膜拍攝引導介面,目的是為了讓使用者能夠有效率地去操作耳鏡以達成拍攝高品質耳膜影像,可以幫助使用者在家中利用隨身的裝置即可操作本商品去做及時檢測和連續監測耳朵內部是否有異狀產生。增加機器學習的概念有效地讓電腦自動去學習,診斷出耳膜疾病,幫助醫生給予適當的治療並減少復發性,避免造成兒童聽力受損和語言發展遲緩等問題。
摘要(英) Otitis media is defined as infection in the middle ear. Acute otitis media (AOM) is one of the most common infections in children under 15 years of age. According to epidemiological studies, children with otitis media have an infection rate of more than 60% before one year old. More than 80 percent of children have at least one episode of otitis media by the time they are 5 years of age and 46% of them have had more than three times of acute otitis media. Therefore, the diagnosis of otitis media in children is very challenging. However, many parents confuse otitis media with a common cold and only half of the patients with otitis media would have a fever. If children are not able to describe the symptoms related to otitis media, parents often ignore the symptoms and even for the physician other than otorhinolaryngologist can misjudge the symptoms, as a consequence, losing the golden time for treatment. At this time, the equipment with the otoscope-assisted diagnosis system in the home can timely observe whether the eardrum is abnormal or not.
Therefore, we proposed a semi-automatic eardrum tracking function implemented to the device, which can guide the user to capture the complete eardrum based on the eardrum illustration diagram. We sketched the outline of the eardrum on the screen so that the user can know the shape of the eardrum. We also add a guide sign to allow the user to move the direction to find eardrum. Finally, it is decided to capture the eardrum according to the ratio of the area of the eardrum to the area of the total picture. Our results demonstrated that this semi-automatic eardrum tracking algorithm can capture the complete eardrum with 90.43% accuracy for total images. Among them, the accuracy of 95.66 % for normal images, the accuracy of 84.92 % for AOM images, the accuracy of 87.88 % for COM images and the accuracy of 84.11 % for OME images. In the back-end image recognition analysis, we also add the concept of deep learning using FCN-AlexNet and FCN-Vgg16 modules to optimize the eardrum image segmentation technology. The computer automatically can learn to get the best and complete eardrum image in order to feature extraction on the eardrum perform automatic classification.
The smart otoscope will be combined with the mobile APP to design an eardrum shooting guide interface, in order to the user efficiently operate the otoscope to achieve high quality eardrum photographs. The smart otoscope can help parents to continuously detect and monitor the internal structure of the ear in time. Through the concept of machine learning, you can diagnose the symptoms of the eardrum and give appropriate treatment to reduce recurrence of the disease. This can avoid hearing loss and slow language development in children.
關鍵字(中) ★ 中耳炎
★ 耳膜
★ 耳鏡
關鍵字(英) ★ Otitis media(OM)
★ Eardrum
★ Otoscope
論文目次 中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 4
第二章 文獻探討 5
2-1 耳膜與中耳炎疾病分類 5
2-2 影像處理 10
2-2-1 影像色彩空間轉換 12
2-2-2 影像二值化 15
2-2-3 FloodFill 泛洪填充演算法 17
2-2-4 輪廓提取與形狀描述 18
2-3 深度學習背景介紹 20
2-3-1 深度學習於電腦視覺應用 21
2-3-2 捲積神經網路(Convolution Neural Network, CNN) 22
2-3-2 FCN(Fully Convolutional Network)語義分割模組 25
第三章 研究方法 27
3-1 資料蒐集方法與程序 27
3-2 耳膜半自動追蹤方法 29
3-2-1 影像前處理 29
3-2-2 區別耳膜與耳洞 31
3-2-3 輪廓提取與捕捉 31
3-3 耳膜拍攝引導方法 33
3-3-1 計算耳膜輪廓質心 33
3-3-2 影像明暗度差異作為耳膜方向 34
3-4 深度學習之影像追蹤 35
3-4-1 影片轉影像之篩選 35
3-4-2 影像切割標記 38
3-4-3 FCN-AlexNet語義分割模組 39
3-4-4 FCN-VGG16語義分割模組 44
第四章 研究結果分析與討論 48
4-1 半自動耳膜捕捉結果 48
4-2 耳膜拍攝引導介面 50
4-2-1 耳膜輪廓示意圖 50
4-2-2 箭頭引導標誌 51
4-2-3 識別標誌 52
4-3 耳膜辨識分析結果 53
4-3-1 耳膜引導功能與深度學習優化之比較結果 60
第五章 結論與未來展望 64
5-1 結論 64
參考文獻Reference 65
參考文獻 [1] Kerschner JE, Preciado D. Otitis media. In: Kliegman RM, Stanton BF, St Geme JW, Schor N, eds. Nelson Textbook of Pediatrics. 20th ed. Philadelphia: Elsevier, 2016:3085-3100.
[2] Klein JO. Otitis Externa, Otitis Media, and Mastoiditis. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett′s Principles and Practice of Infectious Diseases, 8th ed. Philadelphia: Saunders, 2015;767-73.
[3] Wang PC, Chang YH, Chuang LJ, Su HF, Li CY. Incidence and recurrence of acute otitis media in Taiwan′s pediatric population. Clinics (Sao Paulo) 2011;66:395-9.
[4] Takata GS, Chan LS, Morphew T, Mangione-Smith R, Morton SC, Shekelle P. Evidence assessment of the accuracy of methods of diagnosing middle ear effusion in children with otitis media with effusion. Pediatrics. 2003; 112:1379-87.
[5] Muderris T, Yazıcı A, Bercin S, Yalçıner G, Sevil E, Kırıs M. Consumer acoustic reflectometry: accuracy in diagnosis of otitis media with effusion in children. Int J Pediatr Otorhinolaryngol. 2013; 77:1771-4.
[6] Block SL, Mandel E, McLinn S, Pichichero ME, Bernstein S, Kimball S, Kozikowski J. Spectral gradient acoustic reflectometry for the detection of middle ear effusion by pediatricians and parents. Pediatr Infect Dis J. 1998; 17:560-4.
[7] Da Lilly-Tariah OB, Somefun AO. Traumatic perforation of the tympanic membrane in University of Port Harcourt Teaching Hospital, Port Harcourt. Nigeria. Niger Postgrad Med J 2007;14:121-4.
[8] Ott MC, Lundy LB. Tympanic membrane perforation in adults. How to manage, when to refer. Postgrad Med 2001;110:81-4.
[9] Mitchell KS, MD. Trauma to the Middle Ear, Inner Ear, and Temporal Bone. Ballenger′s Otorhinolaryngology Head and Neck Surgery. 16th ed. Chapter 14. 2003. p. 345-56. (Edition James B. Snow Jr, MD Professor Emeritus University of Pennsylvania Philadelphia, Maryland John Jacob Ballenger, MD Associate Professor Department of Otolaryngology–Head and Neck Surgery Northwestern University Chicago, Illinois Chief Emeritus Division of Otolaryngology–Head and Neck Surgery Evanston Hospital Evanston, Illinois).
[10] Ologe FE. Traumatic perforation of tympanic membrane in Ilorin Nigeria. Niger J Surg 2002;8:9-12.
[11] Griffin WL Jr. A retrospective study of traumatic tympanic membrane perforations in a clinical practice. Laryngoscope 1979;89 (2 Pt 1):261-82.
[12] Gacek RR, Gacek MR. Anatomy of the auditory and vestibular systems. In: Snow JB Jr., Ballenger JJ, editors. Ballenger′s Otorhinolaryngology Head and Neck Surgery. 16th ed., Vol. 1. Ontario: DC Becker Inc.; 2003. p. 1-5.
[13] Berger G, Finkelstein Y, Harell M. Non-explosive blast injury of the ear. J Laryngol Otol 1994;108:395-8.
[14] da Lilly-Tariah OB, Somefun AO. Traumatic perforation of the tympanic membrane in University of Port Harcourt Teaching Hospital, Port Harcourt. Nigeria. Niger Postgrad Med J 2007;14:121-4.
[15] Berger G, Finkelstein Y, Harell M. Non-explosive blast injury of the ear. J Laryngol Otol 1994;108:395-8.
[16] Lindeman P, Edström S, Granström G, Jacobsson S, von Sydow C, Westin T, et al. Acute traumatic tympanic membrane perforations. Cover or observe? Arch Otolaryngol Head Neck Surg 1987;113:1285-7.
[17] F.T. Orji, C.C. Agu. Determinants of spontaneous healing in traumatic perforations of the tympanic membrane. Clinical otolaryngology, 2008;33, 420-426.
[18] Chun SH, Lee DW, Shin JK. A Clinical Study of Traumatic Perforation of Tympanic Membrane. Seoul, Korea: Department of O tolaryngology, Hanil General Hospital 2010;113:679-86.
[19] B. Chen and Y. Lei, “Indoor and Outdoor People Detection and Shadow Suppression by Exploiting HSV Color Information,” Fourth International Conference on Computer and Information Technology, pp 137 −142, 2004.
[20] K. Ohba, Y. Sato, and K. Ikeuchi, “Appearance-based visual learning and object recognition with illumination invariance,” Machine Vision and Application, vol. 12, no. 4, pp. 189 −196, 2000.
[21] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley.Color Transfer between Images, IEEE Computer Graphics and Applications, pp. 34-40, September/October 2001.
[22] 陳舒菁 ,“ ROI Recoverable Digital Watermarking for Medical Images ”,Chung Yuan Christian University,June, 2007.
[23] Zhang D S,Lu G J. Study and evaluation of different Fourier methods for image retrieval[J]. Image and Vision Computing, 2005,23(1):33-49.
[24] Alajlan N,Kamel M S,Freeman G. Multi-object image retrieval base on shape and topology[J]. Signal Processing: Image Communication, 2006,21:904-918.
[25] Y. Bengio, "Learning deep architectures for AI," Foundations and trends® in Machine Learning, vol. 2, pp. 1-127, 2009.
[26] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, pp. 1527-1554, 2006.
[27] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The bulletin of mathematical biophysics, 1943, 5(4): 115-133.
[28] Hebb D. The organization of behavior[J]. 1968.
[29] Mohamed A, Dahl G, Hinton G. Deep belief networks for phone recognition[C].Nips workshop on deep learning for speech recognition and related applications. 2009, 1(9): 39.
[30] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580-587.
[31] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," in Advances in neural information processing systems, 2015, pp. 91-99.
[32] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[35] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[36] Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin (2005), Introduction to Data Mining, ISBN 0-321-32136-7.
[37] Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin (2005), Introduction to Data Mining, ISBN 0-321-32136-7.
指導教授 林澂(Chen Lin) 審核日期 2019-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明