博碩士論文 106827007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.239.192.241
姓名 張晋源(Chin-Yuan Chang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究
(Development of Indocyanine Green-Rifampicin-Encapsulated PLGA Nanoparticles for Photo-Chemo Antimicrobial Therapy in Porous Medium)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ 可動態改變外翻力矩的治療退化性膝關節炎輔具
★ 聚乙二醇對於擬球藻生長與脂質堆積之影響★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究
★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量
★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-5-31以後開放)
摘要(中) 人工關節感染是接受關節置換手術的術後併發症之一,術後發生機率約為2 %,約占25 %的手術失敗總數。當人工關節發生細菌感染後,患者關節局部不舒服且因生物膜緣故通常難以治療、假體難以保存。然而更換全新的假體,不只造成患者身體的負擔也造成二次醫療費用支出。因此本研究開發一種以乳化法包覆靛氰綠(Indocyanine green,ICG)與利福平(Rifampicin) 的聚乳酸甘醇酸(Poly-lactide-co-glycolide, PLGA)的奈米載體(Indocyanine Green-Rifampicin-Encapsulated PLGA Nanoparticles, IRPNPs),期望能利用奈米載體同時攜帶光敏劑與抗生素,同時發揮兩種功效應用於治療細菌感染。根據分析表示IRPNPs的平均粒徑265.6 nm、表面電位-28.2 mV、ICG與Rifampicin的包覆率分別約為82.2 %、33.5 %。在本研究中我們採用人工關節感染中常見的細菌-耐甲氧西林金黃色葡萄球菌(Methicillin-Resistant Staphylococcus Aureus, MRSA)與凝固酶陰性葡萄球菌(Coagulase-Negative Staphylococci, CoNS),進行抗菌及破壞生物膜分析,在此研究中,我們提供多孔載體給細菌生長,用以模擬體內細菌感染的環境,後續也將多孔載體應用於in vivo的小鼠異物模型內。在in vitro實驗中,當細菌與多孔載體一同培養時,當葡萄糖存在時能提高細菌生物膜的含量,且珠上細菌隨著時間流逝而逐漸減少。當IRPNPs應用於抗菌及生物膜實驗時,IRPNPs的效果相較於單一光療或是單一抗生素的功效時,皆有一定程度提升,且在後續應用於小鼠異物模型時,也可以獲得與in vitro相似的結果,更是增加我們對IRPNPs對治療細菌感染的信心。
摘要(英) Artificial joint infection is the postoperative complications of joint replacement surgery. The postoperative infection rate is about 2 %, accounting for about 25 % of the total number of surgical failures. The infection area will not only let the patients to feel uncomfortable also hard for treating and difficult to preserve artificial joint. Most of time the patient needs to replacing a new one , which not only causes patient pain but also increases huge secondary medical expenses. This research developed a nano-particles IRPNPs of poly-lactide-co-glycolide (PLGA) encapsulate with indocyanine green (ICG) and rifampicin by emulsion method. IRPNPs can be a carrier to carry both a photosensitizer and an antibiotic, and exert both functions to treat bacterial infections. According to the analysis, the average particle diameter of IRPNPs was 265.6 nm, the surface potential was -28.2 mV, and the encapsulation rate of ICG and Rifampicin are about 82.2 % and 33.5 %.In this study, we used Methicillin-Resistant Staphylococcus Aureus (MRSA) and Coagulase-Negative Staphylococci (CoNS), both are common bacteria cause in artificial joint infections. In this study, we provided porous ceramics for bacterial growth to simulate the environment of bacterial infections in vitro and also in vivo mice foreign body models. In vitro experiments, bacteria were cultured with porous ceramics, the mount of bacterial biofilm was increased when culture medium with glucose, and both the bacteria and biofilms on the beads will decrease with the passage of time. When IRPNPs are used in antibacterial and biofilm experiments, compared with the efficacy of single phototherapy or single antibiotics , the effects of IRPNPs are obvious improved. When it applied into mouse foreign body model the results is similar to in vitro experiments that increase our confidence to apply IRPNPs for treating bacterial infections.
關鍵字(中) ★ 人工關節感染
★ 奈米粒子
★ 靛氰綠
★ 生物膜
★ 利福平
★ 小鼠異物模型
關鍵字(英) ★ PJI
★ nanoparticles
★ ICG
★ Biofilm
★ Rifampicin
★ Mice foreign body model
論文目次 摘要...................i
Abstract..............ii
目錄..................iii
圖目錄................vii
表目錄.................ix
一、緒論............... 1
1-1研究背景與動機........1
1-2研究目的.............2
二、原理與文獻探討.......3
2-1.人工關節感染.........3
2-1-1人工關節置換手術...3
2-1-2人工關節細菌感染....4
2-1-3細菌感染分期及細菌種類....4
2-1-4感染風險因子.........5
2-1-5現有臨床治療 ..........5
2-2生物膜....................8
2-3光治療..............11
2-3-1光動力治療..........11
2-3-2光熱力治療........13
2-4 In vivo植入物相關感染模型......14
2-5靛氰綠 Indocyanine green.......18
2-6利福平 Rifampicin..............20
三、研究材料與方法 ..........21
3-1實驗材料與儀器..........21
3-1-1實驗儀器.........21
3-1-2實驗藥品.........21
3-1-2實驗動物............21
3-2 IRPNPs製備流程........22
3-2-1 0.2% PVA製備........22
3-2-2 IRPNPs製備.......22
3-3 IRPNPs 包覆率與載藥率....23
3-4粒徑與電性分析............24
3-5掃描式電子顯微鏡分析........25
3-6多孔載體之抗菌及生物膜破壞實驗..25
3-6-1細菌培養................ 25
3-6-2多孔載體細菌培養..........25
3-6-3抗菌實驗及菌量分析........26
3-6-4生物膜破壞及含量Elisa OD測定........27
3-7動物實驗...........27
3-7-1 動物實驗流程.........27
3-7-2 建立小鼠異物模型......28
3-7-3 IRPNPs小鼠模型體內抗菌試驗.......28
3-7-4血液生化學分析..........29
3-7-5器官組織學分析..........29
四、實驗結果與討論..........30
4-1 IRPNPs 物理性質分析.......30
4-1-1粒徑分析、電性分析........30
4-1-2表面形態分析..............31
4-1-3 包覆率與載藥率分析.........31
4-2多孔載體上之菌量及生物膜量測定..32
4-3 IRPNPs 體外生物膜試驗及抗菌試驗....34
4-3-1 MRSA生物膜試驗...........34
4-3-2 MRSA體外抗菌試驗........36
4-3-3頭狀葡萄球菌S.capitis生物膜試驗.......40
4-3-4頭狀葡萄球菌S.capitis體外抗菌試驗.....42
4-4 小鼠體內異物模型之抗菌試驗.............45
4-4-1 In vivo行前測試..................45
4-4-2 In vivo抗菌試驗...............46
4-4-3多孔載體埋入處之皮膚組織觀察..........50
4-4-4藥物對小鼠之影響.............52
五、結論.........55
參考文獻........56
附錄一.........65
附錄二.........66
附錄三...........67
附錄四..........68
參考文獻 [1] 衛生福利部統計處-全民健康保險醫療統計
https://dep.mohw.gov.tw/DOS/np-1918-113.html

[2] 全人工膝關節置換(TKR)
http://www.uoc.com.tw/tw/patient_cargiver_knee2.asp

[3] NIH Consensus Development Panel On Total Hip Replacement. NIH Consensus Conference: Total Hip Replacement. JAMA 1995; 273:1950-1956.

[4] Sperling JW, Kozak TK, Hanssen AD, Cofield RH. Infection After Shoulder Arthroplasty. Clin Orthop 2001;382:206-216.

[5] Harris WH, Sledge CB. Total Hip And Total Knee Replacement. N Engl J Med 1990;323:801-807.

[6] Maderazo EG, Judson S, Pasternak H.Late Infections Of Total Joint Prostheses:A Review And Recommendations For Prevention.Clin Orthop 1988;229:131-142.

[7] Schafroth M, Zimmerli W, Brunazzi M,Ochsner PE. Infections. In: Ochsner PE, Ed.Total Hip Replacement. Berlin: Springer-Verlag, 2003:65-90

[8] 人工關節感染早期發現早期治療, 蔡尚聞
https://sites.google.com/view/bonenews/%E9%97%9C%E7%AF%80%E9%87%8D%E5%BB%BA%E9%86%AB%E5%AD%B8/Periprosthetic-joint-infection-2

[9] http://www.bacteriainphotos.com/bacterial-biofilm.html

[10] Mayer C, Moritz R, Kirschner C Et Al. The Role Of Intermolecular Interactions: Studies On Model Systems For Bacterial Biofilms. Int. J. Biol. Macromol. 1999: Oct;26(1):3-16

[11] Gabrielson J, Hart M, Jarelöv A, Kühn I, Mckenzie D, Möllby R. Evaluation Of Redox Indicators And The Use Of Digital Scanners And Spectrophotometer For Quantification Of Microbial Growth In Microplates. J. Microbiol. Methods 50(1), 2002:Jun;50(1):63-73.
[12] Nickel JC, Ruseska I, Wright JB, Costerton JW (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27: 619–624.
[13] Dunne WM, Mason EO, Kaplan SL (1993). Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 37: 2522–2526.

[14] Strominger JL, Tipper DJ (1965). Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am J Med 39: 708–721.

[15] Tuomanen E, Cozens R, ToschW, Zak O, Tomasz A (1986). The rate of killing of Escherichia coli by -lactam antibiotics is strictly proportional to the rate of bacterial growth. Microbiology 132: 1297-1304.

[16] Vakulenko SB, Mobashery S (2003). Versatility of aminoglycosides and prospects for their future versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16: 430-450.

[17] Conlon BP, Rowe SE, Lewis K (2015). Persister cells in biofilm associated infections. Adv Exp Med Biol 831: 1–9.

[18] Goodman S B, Yao Z, Keeney M, Yang F. The Future Of Biologic Coatings For Orthopaedic Implants. Biomaterials 2013:Apr;34(13):3174-83.

[19] Ehrlich GD, Stoodley P, Kathju S Et Al. Engineering Approaches For The Detection And Control Of Orthopaedic Biofilm Infections. Clin. Orthop. Relat. Res. 2005. August ; (437): 59–66.

[20] Robinson AM, Creeth JE, Jones MN. The Use Of Immunoliposomes For Specific Delivery Of Antimicrobial Agents To Oral Bacteria Immobilized On Polystyrene. J. Biomater. Sci. Polym. Ed. 11(12), 2000.

[21] Carmen JC, Nelson JL, Beckstead BL Et Al. Ultrasonic-Enhanced Gentamicin Transport Through Colony Biofilms Of Pseudomonas Aeruginosa And Escherichia Coli. J. Infect. Chemother. 10(4), 2004 Aug:10(4):193-9.

[22] Carmody LA, Gill JJ, Summer EJ, Sajjan US, Gonzalez CF, Young RF et al. (2010). Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis 201:264-271.

[23] Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O et al. (2010). Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201: 1096–1104.

[24] Donlan RM (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17: 66-72.;

[25] Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 2010:54: 397-404.

[26] Sulakvelidze A, Alavidze Z, Morris JG (2001). Bacteriophage therapy. Antimicrob Agents Chemother 45: 649-659.

[27] McVay CS, Velásquez M, Fralick JA (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51: 1934-1938.

[28] Photodynamic Inactivation Of Biofilm: Taking A Lightly Colored Approach To Stubborn Infection. Expert Rev Anti Infect Ther 2013 Jul;11(7):669-93.

[29] Zameer F, Gopal S. Evaluation Of Antibiotic Susceptibility In Mixed Culture Biofilms. Intern J Biotech Biochem. 2010.

[30] Shih PC, Huang CT. Effects Of Quorum-Sensing Deficiency On Pseudomonas Aeruginosa Biofilm Formation And Antibiotic Resistance. J Antimicrob Chemother. 2002 Feb;49(2):309-14..

[31] Costerton JW, Montanaro L, Arciola CR. Biofilm In Implant Infections: Its Production And Regulation. Int J Artif Organs. 2005.34.

[32] Winckler KD. Special section: focus on anti-microbial photodynamic therapy (PDT). J. Photochem. Photobiol. B, Biol. 86(1), 43–44 (2007).

[33] Lauro FM, Pretto P, Covolo L, Jori G,Bertoloni G. Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates. Photochem. Photobiol. Sci. 1(7), 468–470 (2002).

[34] Rajesh S, Koshi E, Philip K et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8(1), 91–105 (2010).

[35] Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3(5), 436–450 (2004).

[36] Alves E, Carvalho CM, Tomé JP et al. Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. J. Ind. Microbiol. Biotechnol. 35(11), 1447–1454 (2008).

[37] Costa L, Tomé JP, Neves MG et al. Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation. Photochem. Photobiol. Sci. 11(10), 1520–1523 (2012).

[38] Sharma SK, Dai T, Kharkwal GB et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 17(13), 1303–1319 (2011).

[39] Bilski P, Motten AG, Bilska M, Chignell CF. The Photooxidation Of Diethylhydroxylamine By Rose Bengal In Micellar And Nonmicellar Aqueous Solutions. Photochem Photobiol. 1993 Jul;58(1):11-8.

[40] Ma J, Jiang L. Photogeneration Of Singlet Oxygen (1O2) And Free Radicals (Sen•-, O2•-) By Tetrabrominated Hypocrellin B Derivative. Free Radic Res. 2001 Dec;35(6):767-77.

[41] Mechanisms in photodynamic therapy: part one—-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004 December ; 1(4): 279–293.

[42] Grune T, Klotz LO, Gieche J, Rudeck M, Sies H. Protein Oxidation And Proteolysis By The Nonradical Oxidants Singlet Oxygen Or Peroxynitrite. Free Radic Biol Med 2001 Jun 1;30(11):1243-53.

[43] Midden WR, Dahl TA. Biological Inactivation By Singlet Oxygen: Distinguishing O2(1 Delta G) And O2(1 Sigma G+). Biochim Biophys Acta. 1992 Sep 15;1117(2):216-22.

[44] Hamblin MR. Antimicrobial Photodynamic Therapy And Photodynamic Inactivation, Or Killing Bugs With Dyes And Light – A Symposium-In-Print. Photochem Photobiol 2012 May-Jun 2012;88(3):496-8.

[45] Sharma SK, Mroz P, Dai T, Et Al. Photodynamic Therapy For Cancer And For Infections: What Is The Difference? Isr J Chem 2012 Sep;52(8-9):691-705.

[46] Jori G, Fabris C, Soncin M, Et Al. Photodynamic Therapy In The Treatment Of Microbial Infections: Basic Principles And Perspective Applications. Lasers Surg Med 2006 Jun;38(5):468-81.

[47] Antibacterial Mechanism And Applications Of Nanozymes. Progress in Biochemistry and Biophysics 2018 Jan 45(2):118-128 ·

[48] Milk Pasteurization: Guarding Against Disease", Michigan State University Extension

[49] Smith, P.W., (August 1981), "Milk Pasteurization" Fact Sheet Number 57, U.S. Department Of Agriculture Research Service, Washington, DC

[50] Darouiche, R.O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350, 1422–1429.

[51] Tsaras, G.; Osmon, D.R.; Mabry, T.; Lahr, B.; St Sauveur, J.; Yawn, B.; Kurland, R.; Berbari, E.F. Incidence, secular trends, and outcomes of prosthetic joint infection: A population-based study, olmsted county, minnesota, 1969–2007. Infect. Control Hosp. Epidemiol. 2012, 33, 1207–1212.

[52] Zappe, B.; Graf, S.; Ochsner, P.E.; Zimmerli, W.; Sendi, P. Propionibacterium spp. in prosthetic joint infections: A diagnostic challenge. Arch. Orthop. Trauma Surg. 2008, 128, 1039–1046.

[53] Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm , Antibiotics 2014, 3, 378-397

[54] Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654.

[55] Zimmerli, W.; Frei, R.; Widmer, A.F.; Rajacic, Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J. Antimicrob. Chemother. 1994, 33, 959–967

[56] Zimmerli, W.; Waldvogel, F.A.; Vaudaux, P.; Nydegger, U.E.Pathogenesis of foreign body infection: Description and characteristicsof an animal model. J. Infect. Dis. 1982, 146, 487–497

[57] Elek, S.D.; Conen, P.E. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br. J. Exp. Pathol. 1957, 38, 573–586.

[58] Widmer, A.F.; Frei, R.; Rajacic, Z.; Zimmerli, W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J. Infect. Dis. 1990, 162, 96–102.

[59] Zimmerli, W.; Frei, R.; Widmer, A.F.; Rajacic, Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J. Antimicrob. Chemother. 1994, 33, 959–967.

[60] Zimmerli, W.; Lew, P.D.; Waldvogel, F.A. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J. Clin. Invest. 1984, 73, 1191–1200.

[61] Drancourt, M.; Stein, A.; Argenson, J.N.; Zannier, A.; Curvale, G.; Raoult, D. Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob. Agents Chemother. 1993, 37, 1214–1218.

[62] Tafin, U.F.; Corvec, S.; Betrisey, B.; Zimmerli, W.; Trampuz, A. Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 2012, 56, 1885–1891.

[63] Olson, M.E.; Slater, S.R.; Rupp, M.E.; Fey, P.D. Rifampicin enhances activity of daptomycin and vancomycin against both a polysaccharide intercellular adhesin (pia)-dependent and -independent Staphylococcus epidermidis biofilm. J. Antimicrob. Chemother. 2010, 65, 2164–2171.

[64] Zimmerli, W. Tissue cage infection model. In Handbook of Animal Models of Infection. Experimental Models in Antimicrobial Chemotherapy; Zak, O.S., Merle, A., Eds.; Academic Press: London, UK, 1999.

[65] Lucet, J.C.; Herrmann, M.; Rohner, P.; Auckenthaler, R.; Waldvogel, F.A.; Lew, D.P. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1990, 34, 2312–2317.

[66] Hudetz, D.; Ursic Hudetz, S.; Harris, L.G.; Luginbuhl, R.; Friederich, N.F.; Landmann, R. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants. Clin. Microbiol. Infect. 2008, 14, 1135–1145.

[67] Fluckiger, U.; Ulrich, M.; Steinhuber, A.; Doring, G.; Mack, D.; Landmann, R.; Goerke, C.; Wolz, C. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by Staphylococci in a device-related infection model. Infect. Immun. 2005, 73, 1811–1819.

[68] A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In Vivo the Efficacy of Antimicrobial Implant Coatings

[69] Chai, H.; Guo, L.; Wang, X.; Fu, Y.; Guan, J.; Tan, L.; Ren, L.; Yang, K. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J. Mater. Sci. 2011, 22, 2525–2535.

[70] Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, et al. (2010) A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In
Vivo the Efficacy of Antimicrobial Implant Coatings. PLoS ONE 5(9): e12580.

[71] Https://Www.Medicalsupporter.Org/Icgliposome

[72] indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions

[73] Zonghai Sheng, Dehong Hu, Miaomiao Xue, Meng He, Ping Gong and Lintao Cai, “Indocyanine Green Nanoparticles for Theranostic Applications”, Nano-Micro Lett. 5(3), 145-150 (2013).

[74] Kumar, Challa S. S. R. Biological And Pharmaceutical Nanomaterials

[75] V. Saxena, M. Sadoqi And J. Shao, “Enhanced Photostability, Thermal-Stability nd Aqueous-Stability Of Indocyanine Green In Polymeric Nanoparticulate Systems”, J. Photochem. Photobiol. 2004.

[76] L. Larush And S. Magdassi, “Formation Of Nearinfrared Fluorescent Nanoparticles For Medical Imaging”, Nanomedicine. 2011.

[77] A. J. Gomes, L. O. Lunardi, J. M. Marchetti, C. N. Lunardi And A. C. Tedesco, “Indocyanine Green Nanoparticles Useful For Photomedicine”, Photomedicine And Laser Surgery 2006.

[78] .https://www.drugs.com/monograph/rifampin.html

[79] Linda; Harding, Mariann. Medical-Surgical Nursing : Assessment And Management Of Clinical Problems (9th Ed.). St. Louis, Missouri Calvori C, Frontali L, Leoni L, Tecce G (July 1965). "Effect Of Rifamycin On Protein Synthesis".

[80] G Curci, A Ninni, A.D′Aleccio (1969) Atti Tavola Rotonda Rifampicina, Taormina, Page 19. Edizioni Rassegna Medica, Lepetit, Milano

[81] 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療-邱承智,中華民國107年12月

[82] The Biology and Medicine of Rabbits and rodents. 1983.

[83] 三種小鼠血液生理生化正常值的測定,王冬平、李善如https://wenku.baidu.com/view/3ec0115d83d049649a6658af.html
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2020-6-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明