博碩士論文 106827019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.116.62.45
姓名 黃新棠(Hsin-Tang Huang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 建立雙離子高分子修飾蛋白質技術與分析
(Development and Characterization of Zwitterionization for Proteins)
相關論文
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 根據報導與研究,我們可以發現許多聚乙二醇化的藥物廣泛地應用在臨床治
療,是因為 經 修飾後的藥物可以增加在體內的半衰期並降低細胞毒性。然而,在最
近的研究中發現,有些人體內已經產生抗聚乙二醇的抗體,抗體的存在降低了 聚乙
二醇化藥物的治療效果,並且在臨床報告中增加了過敏反應的風險。 而在有些研究
中發現,增加與聚乙二醇相關產品接觸的機會 ,會促進健康的人體產生抗 聚 乙二醇
的抗體 。在本研究 第一部份中, 選用 2-甲基丙烯醯氧基氧基乙基磷酸膽鹼 (MPC) 與 [2-(甲基丙烯酰氧基 )乙基 ]二甲基 -(3-磺丙基 )氨基甲酸銨 (SBMA)兩種單體 透
過 原子轉移自由基聚合 的方法 ,合成 具有 N-羥基琥珀酰亞胺 (NHS) 末端的兩性
離子聚合物 此 聚合物 需 有可以控制的分子量 與窄的分子量分佈 ,並利用此雙離子
高分子聚合物 接合牛血清蛋白 (Bovine serum albumin, BSA)。 研究第二部份中,使
用小鼠作為動物實驗對象,注射藥品後,測量其體內血清中抗 BSA抗體濃度變化,
以推估 蛋白質經 雙離子高分子聚合物 (pMPC, pSBMA) 這類材料 接合後 能否比
只有 BSA注射時,有更好的體內半衰期,延長蛋白質在體內存留時間。
經由實驗結果證明了
相較常見的原子轉移自由基聚合 電子轉移再生活化之
原子轉移自由基聚合 可以在除氧條件不佳的情況下,依然可以控制分子量與擁有
窄的分子量分布,並經由小鼠實驗證明接枝雙離子高分子聚合物的蛋白質 相較於
未接枝雙離子高分子聚合物的蛋白質有 較長的 體內存留時間 。雙離子高分子聚合
物 與蛋白質接枝後的能力提供新的藥物設計途徑並 具有 修飾 市售蛋白質藥物 功能
與 醫學 應用上進一步發展的潛力。
摘要(英) PEGylated agents are broadly used in clinical therapy due to the increase in the half-life efficacy and decrease in the cytotoxicity. However, in the recent research, the existence of anti-PEG antibodies has been found, which deteriorates the efficacy of the therapeutic PEGylated drugs and enhances the risk of allergic reaction in some clinical reports. It has been found that the increasing exposure to PEG-related products will promote anti-PEG antibodies in the healthy human. In this research, we synthesized N-hydroxysuccinimide-terminated 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers and N-hydroxysuccinimide-terminated 2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide(SBMA) through atom transfer radical polymerization (ATRP). After synthesis, using Nuclear Magnetic Resonance spectrum to characterize the structure of polymer and calculate its molecular weights. Also, using Gel Permeation Chromatography to check molecular weights and polydispersity index. Then, Bovine serum albumin was used to conjugate with zwitterionic polymer. Finally, polymer-protein conjugates were introduced into mice to know their pharmacokinetics to investigate their circulation time. The experimental results showed that Activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) compares to normal atom transfer radical polymerization (ATRP) has less critical deoxygenation for the polymerization to control the molecular weight of polymer and less polydispersity index, and experiment in mice proved that the protein-zwitterionic polymer conjugation had longer circulation time in body than the non-conjugation protein. The potential of zwitterionized therapeutic proteins was evaluated to justify their role in medical applications. More aggressively, the safety issue and biocompatibility of polymer-protein conjugates will be comprehensively identified and contemplated. A new avenue to molecular design for polymer-protein conjugates will be explored.
關鍵字(中) ★ 聚乙二醇化蛋白質
★ 雙離子高分子聚合物
★ 原子轉移自由基聚合
★ 半衰期
關鍵字(英)
論文目次 摘要
I
Abstarct II

謝 辭 IV
目錄
V
圖目錄
VII
表目錄
IX
第一章
緒論 1
1-1 蛋白質藥物 1
1-1-1 聚乙二醇化蛋白質藥物 2
1-1-2 聚乙二醇化蛋 白質藥物臨床應用上的挑戰 4
1-1-3 雙離子高分子聚合物 -蛋白質接合物 6
1-2 高分子聚合物 10
1-2-1 聚電解質 10
1-2-2 雙離子高分子聚合物 10
1-3 自由基聚合反應 13
1-3-1 原子轉移自由基聚合 15
第二章
研究目的 18
第三章
實驗藥品及實驗方法 19
3-1 實驗藥品 19
3-2 材料合成 21
3-2-1 Normal ATRP合成 23
3-2-2 ARGET-ATRP合成 23
3-2-3 牛血清蛋白與高分子聚合物接枝 25
3-2-4 無水溶劑之製備 25
3-3 實驗方法 26
3-3-1 核磁共振光譜法 (Nuclear Magnetic Resonance, NMR) 26
3-3-2 凝膠滲透層析 (Gel Permeation Chromatography, GPC) 27
3-3-3 動態光散射粒徑分析 30
3-3-4 表面電將共振 31
3-3-5 動物體內循環測試 32
第四章
結果與討論 33
4-1 一般 ATRP與 ARGET ATRP之效果比較 33
4-2 高分子聚合物材料合成鑑定 38
4-2-1高分子聚合物之核磁共振氫譜分析 38
4-2-2 高分子聚合物之凝膠滲透層析 44
4-2-3 高分子聚合物之轉化率、聚合度與產率 45
4-3 高分子聚合物與蛋白質接合物分析 46
4-3 動物體內循環分析 51
4-3-1 以表面電將共振分析抗牛血清蛋白 (BSA) 抗體 51
4-3-2 小鼠體內蛋白質留存比較 56
第五章
結論 59
參考文獻 60
參考文獻 [1] Schellekens, H., Bioequivalence and the immunogenicity of biopharmaceuticals. Nature reviews Drug discovery 2002, 1 (6), 457.
[2] Dimitrov, D. S. J. T. P. M.; Protocols, Therapeutic proteins. 2012, 1-26.
[3] Berkowitz, S. A.; Engen, J. R.; Mazzeo, J. R.; Jones, G. B., Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nature Reviews Drug Discovery 2012, 11 (7), 527.
[4] Carter, P. J., Introduction to current and future protein therapeutics: a protein engineering perspective. Experimental cell research 2011, 317 (9), 1261-1269.
[5] Davis, F. F.; Abuchowski, A.; Van Es, T.; Palczuk, N.; Chen, R.; Savoca, K.; Wieder, K. J. E. E. V., Enzyme-polyethylene glycol adducts: modified enzymes with unique properties. 1978, 169-173.
[6] Abuchowski, A.; Van Es, T.; Palczuk, N.; Davis, F. J. J. o. B. C., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. 1977, 252 (11), 3578-3581.
[7] Abuchowski, A.; Van Es, T.; Palczuk, N.; Davis, F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry 1977, 252 (11), 3578-3581.
[8] Abuchowski, A.; McCoy, J. R.; Palczuk, N. C.; van Es, T.; Davis, F. F., Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry 1977, 252 (11), 3582-3586.
[9] Veronese, F. M.; Pasut, G. J. D. d. t., PEGylation, successful approach to drug delivery. 2005, 10 (21), 1451-1458.
[10] Harris, J. M.; Martin, N. E.; Modi, M., Pegylation. Clinical pharmacokinetics 2001,
61
40 (7), 539-551.
[11] Lee, V., Peptide and protein drug delivery. Crc Press: 1990; Vol. 4.
[12] Nucci, M. L.; Shorr, R.; Abuchowski, A., The therapeutic value of poly (ethylene glycol)-modified proteins. Advanced drug delivery reviews 1991, 6 (2), 133-151.
[13] Levy, Y.; Hershfield, M. S.; Fernandez-Mejia, C.; Polmar, S. H.; Scudiery, D.; Berger, M.; Sorensen, R. U., Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. The Journal of pediatrics 1988, 113 (2), 312-317.
[14] Trainer, P. J.; Drake, W. M.; Katznelson, L.; Freda, P. U.; Herman-Bonert, V.; van der Lely, A.-J.; Dimaraki, E. V.; Stewart, P. M.; Friend, K. E.; Vance, M. L., Treatment of acromegaly with the growth hormone–receptor antagonist pegvisomant. New England Journal of Medicine 2000, 342 (16), 1171-1177.
[15] Garratty, G., Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox sanguinis 2008, 94 (2), 87-95.
[16] Cheng, T.-L.; Chen, B.-M.; Chern, J.-W.; Wu, M.-F.; Roffler, S. R. J. B. c., Efficient clearance of poly (ethylene glycol)-modified immunoenzyme with anti-PEG monoclonal antibody for prodrug cancer therapy. 2000, 11 (2), 258-266.
[17] Cheng, T.-L.; Wu, P.-Y.; Wu, M.-F.; Chern, J.-W.; Roffler, S. R. J. B. c., Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. 1999, 10 (3), 520-528.
[18] Hershfield, M. S.; Ganson, N. J.; Kelly, S. J.; Scarlett, E. L.; Jaggers, D. A.; Sundy, J. S. J. A. r.; therapy, Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. 2014, 16 (2), R63.
[19] Lila, A. S. A.; Kiwada, H.; Ishida, T. J. J. o. C. R., The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. 2013, 172 (1),
62
38-47.
[20] Ishihara, T.; Maeda, T.; Sakamoto, H.; Takasaki, N.; Shigyo, M.; Ishida, T.; Kiwada, H.; Mizushima, Y.; Mizushima, T. J. B., Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers. 2010, 11 (10), 2700-2706.
[21] Chen, B.-M.; Su, Y.-C.; Chang, C.-J.; Burnouf, P.-A.; Chuang, K.-H.; Chen, C.-H.; Cheng, T.-L.; Chen, Y.-T.; Wu, J.-Y.; Roffler, S. R., Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Analytical chemistry 2016, 88 (21), 10661-10666.
[22] Ganson, N. J.; Povsic, T. J.; Sullenger, B. A.; Alexander, J. H.; Zelenkofske, S. L.; Sailstad, J. M.; Rusconi, C. P.; Hershfield, M. S., Pre-existing anti–polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. Journal of Allergy and Clinical Immunology 2016, 137 (5), 1610-1613. e7.
[23] Longo, N.; Harding, C. O.; Burton, B. K.; Grange, D. K.; Vockley, J.; Wasserstein, M.; Rice, G. M.; Dorenbaum, A.; Neuenburg, J. K.; Musson, D. G., Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. The Lancet 2014, 384 (9937), 37-44.
[24] Ganson, N. J.; Kelly, S. J.; Scarlett, E.; Sundy, J. S.; Hershfield, M. S., Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly (ethylene glycol)(PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis research & therapy 2005, 8 (1), R12.
[25] Keefe, A. J.; Jiang, S., Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature chemistry 2012, 4 (1), 59-
63
63.
[26] Liu, S.; Jiang, S., Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response. Nano Today 2016, 11 (3), 285-291.
[27] Lowe, A. B.; McCormick, C. L., Synthesis and solution properties of zwitterionic polymers. Chemical reviews 2002, 102 (11), 4177-4190.
[28] Schaefgen, J. R.; Trivisonno, C. F., Polyelectrolyte Behavior of Polyamides. II. Viscosities of Solutions of Linear and Multichain Polyamides in Formic Acid1. Journal of the American Chemical Society 1952, 74 (11), 2715-2717.
[29] Munk, P.; Aminabhavi, T. M., Introduction to macromolecular science. Wiley New York: 1989.
[30] Zieba, M.; Wieczorek, D.; Klimaszewska, E.; Malysa, A.; Kwasniewska, D. J. J. o. D. S.; Technology, Application of new synthesized zwitterionic surfactants as hair shampoo components. 2019, 40 (8), 1189-1196.
[31] Dobrynin, A. V.; Colby, R. H.; Rubinstein, M. J. J. o. P. S. P. B. P. P., Polyampholytes. 2004, 42 (19), 3513-3538.
[32] Salamone, J.; Volksen, W.; Olson, A.; Israel, S., Aqueous solution properties of a poly (vinyl imidazolium sulphobetaine). Polymer 1978, 19 (10), 1157-1162.
[33] Hildebrand, V.; Laschewsky, A.; Päch, M.; Müller-Buschbaum, P.; Papadakis, C. M., Effect of the zwitterion structure on the thermo-responsive behaviour of poly (sulfobetaine methacrylates). Polymer Chemistry 2017, 8 (1), 310-322.
[34] Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu 1978, 35, 423-427.
[35] West, S. L.; Salvage, J. P.; Lobb, E. J.; Armes, S. P.; Billingham, N. C.; Lewis, A. L.; Hanlon, G. W.; Lloyd, A. W., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 2004, 25 (7-8), 1195-1204.
64
[36] Ishihara, K. J. S.; Materials, T. o. A., Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. 2000, 1 (3), 131.
[37] Ishihara, K.; Mu, M.; Konno, T.; Inoue, Y.; Fukazawa, K. J. J. o. B. s., Polymer edition, The unique hydration state of poly (2-methacryloyloxyethyl phosphorylcholine). 2017, 28 (10-12), 884-899.
[38] Wang, D.-a.; Williams, C. G.; Li, Q.; Sharma, B.; Elisseeff, J. H., Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials 2003, 24 (22), 3969-3980.
[39] Ueda, T.; Oshida, H.; Kurita, K.; Ishihara, K.; Nakabayashi, N., Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polymer Journal 1992, 24 (11), 1259-1269.
[40] Zhang, Z.; Chao, T.; Liu, L.; Cheng, G.; Ratner, B. D.; Jiang, S., Zwitterionic hydrogels: an in vivo implantation study. Journal of Biomaterials Science, Polymer Edition 2009, 20 (13), 1845-1859.
[41] Zhang, Z.; Chen, S.; Chang, Y.; Jiang, S., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. The Journal of Physical Chemistry B 2006, 110 (22), 10799-10804.
[42] Fu, C.; Wang, Z.; Gao, Y.; Zhao, J.; Liu, Y.; Zhou, X.; Qin, R.; Pang, Y.; Hu, B.; Zhang, Y. J. N. S., Sustainable polymer coating for stainproof fabrics. 2023, 1-11.
[43] Yancey, P. H.; Clark, M. E.; Hand, S. C.; Bowlus, R. D.; Somero, G. N. J. S., Living with water stress: evolution of osmolyte systems. 1982, 217 (4566), 1214-1222.
[44] Zhou, J.; Yuan, J.; Zang, X.; Shen, J.; Lin, S. J. C.; Biointerfaces, S. B., Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. 2005, 41 (1), 55-62.
65
[45] Mishra, V.; Kumar, R., Living radical polymerization: A review. J. Sci. Res 2012, 56, 141-176.
[46] Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G. J. M., Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. 1998, 31 (16), 5559.
[47] Boyer, C.; Liu, J.; Bulmus, V.; Davis, T. P. J. A. j. o. c., RAFT polymer end-group modification and chain coupling/conjugation via disulfide bonds. 2009, 62 (8), 830-847.
[48] Moad, G.; Rizzardo, E.; Thang, S. H. J. A. j. o. c., Living radical polymerization by the RAFT process–a second update. 2009, 62 (11), 1402-1472.
[49] Pissuwan, D.; Boyer, C.; Gunasekaran, K.; Davis, T. P.; Bulmus, V. J. B., In vitro cytotoxicity of RAFT polymers. 2010, 11 (2), 412-420.
[50] Wang, J.-S.; Matyjaszewski, K., Controlled/" living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117 (20), 5614-5615.
[51] Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. J. M., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. 1995, 28 (5), 1721-1723.
[52] Matyjaszewski, K. J. M., Atom transfer radical polymerization (ATRP): current status and future perspectives. 2012, 45 (10), 4015-4039.
[53] Pietrasik, J.; Dong, H.; Matyjaszewski, K. J. M., Synthesis of high molecular weight poly (styrene-co-acrylonitrile) copolymers with controlled architecture. 2006, 39 (19), 6384-6390.
66
[54] Samanta, D.; McRae, S.; Cooper, B.; Hu, Y.; Emrick, T.; Pratt, J.; Charles, S. A. J. B., End-functionalized phosphorylcholine methacrylates and their use in protein conjugation. 2008, 9 (10), 2891-2897.
[55] Yamamoto, S.-i.; Matyjaszewski, K. J. P. j., ARGET ATRP synthesis of thermally responsive polymers with oligo (ethylene oxide) units. 2008, 40 (6), 496-497.
[56] Li, S.; Cohen-Karni, D.; Kallick, E.; Edington, H.; Averick, S. J. P., Post-polymerization functionalization of epoxide-containing copolymers in trifluoroethanol for synthesis of polymer-drug conjugates. 2016, 99, 59-62.
[57] Ma, I. Y.; Lobb, E. J.; Billingham, N. C.; Armes, S. P.; Lewis, A. L.; Lloyd, A. W.; Salvage, J. J. M., Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study. 2002, 35 (25), 9306-9314.
[58] Patten, T. E.; Matyjaszewski, K. J. A. M., Atom transfer radical polymerization and the synthesis of polymeric materials. 1998, 10 (12), 901-915.
[59] Payne, K. A.; D’hooge, D. R.; Van Steenberge, P. H.; Reyniers, M.-F.; Cunningham, M. F.; Hutchinson, R. A.; Marin, G. B. J. M., ARGET ATRP of butyl methacrylate: utilizing kinetic modeling to understand experimental trends. 2013, 46 (10), 3828-3840.
[60] Baumann, A., Early development of therapeutic biologics-pharmacokinetics. Current drug metabolism 2006, 7 (1), 15-21.
[61] Regev, O.; Khalfin, R.; Zussman, E.; Cohen, Y. J. I. j. o. b. m., About the albumin structure in solution and related electro-spinnability issues. 2010, 47 (2), 261-265.
[62] Nelson, J. W.; Kallenbach, N. R. J. P. S., Function,; Bioinformatics, Stabilization of the ribonuclease S‐peptide α‐helix by trifluoroethanol. 1986, 1 (3), 211-217.
[63] Banerjee, T.; Kishore, N. J. B. O. R. o. B., Does the anesthetic 2, 2, 2‐trifluoroethanol interact with bovine serum albumin by direct binding or by solvent‐mediated effects?
67
A calorimetric and spectroscopic investigation. 2005, 78 (2), 78-86.
[64] Povey, J. F.; Smales, C. M.; Hassard, S. J.; Howard, M. J. J. J. o. S. B., Comparison of the effects of 2, 2, 2-trifluoroethanol on peptide and protein structure and function. 2007, 157 (2), 329-338.
[65] Wang, G.; Yan, C.; Gao, S.; Liu, Y. J. M. S.; C, E., Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. 2019, 103, 109856.
[66] Zhang, P.; Sun, F.; Tsao, C.; Liu, S.; Jain, P.; Sinclair, A.; Hung, H.-C.; Bai, T.; Wu, K.; Jiang, S. J. P. o. t. N. A. o. S., Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. 2015, 112 (39), 12046-12051.
[67] Homola, J. J. C. r., Surface plasmon resonance sensors for detection of chemical and biological species. 2008, 108 (2), 462-493.
[68] Stebunov, Y. V.; Arsenin, A. V.; Volkov, V. S. J. M. T. P., SPR analysis of antibody-antigen interactions using graphene oxide linking layers. 2018, 5 (9), 17442-17446.
[69] Wall, S. T.; Saha, K.; Ashton, R. S.; Kam, K. R.; Schaffer, D. V.; Healy, K. E. J. B. c., Multivalency of Sonic hedgehog conjugated to linear polymer chains modulates protein potency. 2008, 19 (4), 806-812.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明