博碩士論文 106827602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.230.154.129
姓名 艾德(Ider Sarantuya)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 基於PEG的益生元影響皮膚細菌和皮膚電的發酵
(PEG-based Prebiotic Affects Fermentation of Skin Bacteria and Dermal Electricity)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
★ 甘油對於皮膚細菌和皮膚發電之影響★ 從人類皮膚微生物總體中鑑定溶解磷酸鈣的細菌
★ 皮膚表皮葡萄球菌透過發酵抑制紅色毛癬菌之研究★ 建立人類皮膚益生微生物菌組銀行
★ The study of in vitro and in vivo fermentation of bacteria in the skin microbiome★ 基於半胱氨酸的水凝膠與銅離子結合以抵抗USA300耐甲氧西林金黃色葡萄球菌作為有效的傷口敷料
★ 藉由金黃色葡萄球菌增加抗體的產生來對抗痤瘡丙酸桿菌,用以增進痤瘡之治療★ 共生菌痤瘡丙酸桿菌之葡萄糖發酵在小鼠中磷酸鈣誘導之搔癢以及促發炎介白素-6的產生上的效果。
★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
皮膚電導是皮膚電導率的測量。表皮葡萄球菌(表皮葡萄球菌),是一種革蘭氏陽性細菌,屬於金黃色葡萄球菌的40多種物種之一,可以將甘油代謝成SCFAs並產生電能。因此,我們假設細菌發酵影響皮膚電導。在該研究中,PEG-150二硬脂酸酯(PDS)用作碳源以誘導表皮葡萄球菌的發酵並產生電。在體外實驗中,電可以顯著抑制自由基,這是通過產生脂質過氧化的主要終產物之一4-羥基壬烯(HNE)來測量的。具有表皮葡萄球菌的PDS引發小鼠皮膚中的顯著電力升高。初步結果表明,表皮葡萄球菌PDS發酵產生的電子抑制了應激誘導的小鼠毛髮生長抑制。
摘要(英) Abstract
Skin conductance is the measurement of the electrical conductivity of the skin. Staphylococcus epidermidis (S. epidermidis), is a Gram-positive bacterium, and one of over 40 species belonging to the genus Staphylococcus which can metabolize glycerol to SCFAs and produce electricity. We thus hypothesize that bacterial fermentation affects the skin conductance. In this study, PEG-150 Distearate (PDS), was used as a carbon source to induce fermentation of S. epidermidis and generated electricity. In vitro experiment, electricity can significantly suppress the free radicals which were measured by the production of 4-Hydroxynonenal (HNE), one of the major end products of lipid peroxidation. PDS with S. epidermidis, triggered a significant elevation of electricity in mouse skin. Preliminary results indicated that electron produced by PDS fermentation of S. epidermidis inhibited the stress-induced suppression of hair growth in mice.
關鍵字(中) ★ 自由基
★ 電
★ 發酵
★ IL-6
★ PDS 2%
★ 表皮葡萄球菌
關鍵字(英) ★ Staphylococcus epidermidis
★ Fermentation
★ Electricity
★ Free radicals
★ IL-6
★ PDS 2%
論文目次 Table of content
1. Introduction………………………………...……...………………………….1
1.1 Skin……………………………………………….………………………1
1.2 Hair Growth…………………...…………………………………………2
1.3 Hair follicle and mechanism of the hair growth………………...……….2
1.4 Fermentation of Bacteria………...………………………………………3
1.5 Bacterium…………………………………...………………...…………5
1.6 PDS…….………………………………………………………………...6
1.7 Free Radicals………………………………...…………………………..7
1.7.1 Oxidation Factors……………………………………………...7
1.7.2 Disease Risks………………………………………….………8
1.7.3 Important Antioxidants……………………………….……….8
1.8 IL-6……………………………………...……………………………….9
1.9 Skin Patch………………………………………………………………10
1.10 Stressor………………………………………………………………11
2. Material and Methods……………………………………...………………..12
2.1 Materials………………………………………………………………...12
2.1.1 Apparatus or Instruments……………………………………...12
2.1.2 Reagents……………………………………………………….13
2.2 Methods…………………………………………………………………14
2.2.1 The Growth of Bacteria…………………...…………………..14
2.2.2 OD measurement, Decrease the Bacterial OD………………..14
2.2.3 Medium Preparation…………………………………………...14
2.2.4 Animal Experiment……………………………………………15
3. Result..……………………………………………………………………….16
3.1 0.72% Mushroom powder fermentation of S. staphylococcus……..……16
3.2 Regular Rice powder (0.72%) fermentation of S. staphylococcus….…18
3.3 0.02% of PDS fermentation of Staphylococcus epidermidis and voltage measurement on mouse dorsal back skin………...……………………..19
3.4 Time Point and IL-6 result……………………………………………...21
3.5 Western blotting and result…………………………………………...…23
4. Discussion and Conclusion………………………...………………………..24
5. References……………………………………………..……………………25
參考文獻 References
1. Wen Yen Huang, Yi Ching HuangaKai Shin HuangaChih Chieh ChanbHsien Yi Chiu Ren YeuTsai, Jung Yi Chan, Sung Jan Lin, Stress induced premature senescence of dermal papilla cells compromises hair follicle epithelial mesenchymal interaction.
2. Janbonski, N.G. (2006). Skin a natural history. Berkeley, CA: University of California Press.
3. Stem cell dynamics in the hair follicle niche Panteleimon Rompolas* and Valentina Greco* Semin Cell Dev Biol. 2014 Jan-Feb; 0: 34–42.
4. Raj SB, Ramaswamy S, Plapp BV. "Yeast alcohol dehydrogenase structure and catalysis". Biochemistry. 53:5791803. doi:10.1021/bi5006442. PMC 4165444. PMID 25157460.
5. Possible Mechanisms of Fullerene C60 Antioxidant Action V. A. Chistyakov,1 Yu. O. Smirnova,2,3 E. V. Prazdnova,1 and A. V. Soldatov2. Research Institute of Biology, Southern Federal University, Rostov-on-Don 344090, Russia. 2013.
6. WILLENBERG, HOLGER S. a; PATH, GUNTER b; VOGELI, THOMAS A. c; SCHERBAUM, WERNER A. a; BORNSTEIN, STEFAN R. Role of Interleukin-6 in Stress Response in Normal and Tumorous Adrenal Cells and during Chronic Inflammation. 2002. New York Academy of Sciences
7. JürgenSchelleraAthenaChalarisbDirkSchmidt-ArrasbStefanRose-Johnb The pro- and anti-inflammatory properties of the cytokine interleukin-6 Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany. 2011
8. Huang WY, Huang YC, Huang KS, Chan CC, Chiu HY, Tsai RY, Chan JY, Lin SJ. Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. 2017 Jan
9. Petra Clara Arck, Bori Handjiski, Eva M. J. Peters, Evelin Hagen, Burghard F. Klapp,Ralf Paus, Topical minoxidil counteracts stress induced hair growth inhibition in mice. 09 September 2003
10. Int J Anal Chem. Jadoon S, Karim S, Akram MR, Kalsoom Khan A, Zia MA, Siddiqi AR Recent developments in sweat analysis and its applications et al 2015;2015:164974
11. Griller, David; Ingold, Keith U. (1976). "Persistent carbon-centered radicals". Accounts of Chemical Research. 9: 13–19. doi:10.1021/ar50097a003.
12. IUPAC Gold Book radical (free radical)
13. Schleifer, K. H.; Kloos, W. E. (1975). "Isolation and Characterization of Staphylococci from Human Skin I. Amended Descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and Descriptions of Three New Species Staphylococcus cohnii, Staphylococcus haemolyticus, and Staphylococcus xylosus". International Journal of Systematic Bacteriology. 25 (1): 50–61. doi:10.1099/00207713-25-1-50. ISSN 0020-7713.
14. Queck SY & Otto M (2008). "Staphylococcus epidermidis and other Coagμl ase-Negative Staphylococci". Staphylococcus: Molecμl ar Genetics. Caister Academic Press. ISBN 978-1-904455-29-5.
15. Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., Two, A., Gallo, R. L., … Huang, C.Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vμl garis M.Applied microbiology and biotechnology,(2013) ;98(1), 411-24.
16. Otto M., Staphylococcus epidermidis--the ′accidental′ pathogen. Nature reviews.
Microbiology, 7(8), (2009). 555-67.
17. Atlas of Oral Microbiology From Healthy Microflora to Disease 2015, Pages 41-65
18. Encyclopedia of Food Sciences and Nutrition (Second Edition) 2003, Pages 881-887
19. LeBlanc, J. G., Chain, F., Martín, R., Bermúdez-Humarán, L. G., Courau, S., &Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial cell factories, 16(1), 79 (2017). doi:10.1186/s12934-017-0691-z
20. Wagenaar G.T.M., Garssen J., Folkerts G. Henricks P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells Li M(2018) European Journal of Pharmacology, 831, pp. 52-59.
21. Fey, P. D.; Olson, M. E. (2010). "Current concepts in biofilm formation of Staphylococcus epidermidis". Future Microbiology. 5 (6): 917–933. doi:10.2217/fmb.10.56. PMC 2903046. PMID 20521936.
22. C. Edwards, in Encyclopedia of Food Sciences and Nutrition (Second Edition), ,2003
23. Burtenshaw J. M. The mechanism of self-disinfection of the human skin and its appendages. The Journal of hygiene, 42(2), (1942). 184-210. 30
24. Raj SB, Ramaswamy S, Plapp BV. "Yeast alcohol dehydrogenase structure and catalysis". Biochemistry. 53: 5791803. doi:10.1021/bi5006442. PMC 4165444. PMID 25157460.
25. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. Federative International Committee on Anatomical Terminology (2008). Terminologia histologica: international terms for human cytology and histology, p. 121. ISBN 9780781775373
26. Zhiyong Zhang, Osama Abdel-Razek, Samuel Hawgood,, Guirong Wang , Protective Role of Surfactant Protein D in Ocμl ar Staphylococcus aureus Infection Published: September 23, 2015 https://doi.org/10.1371/journal.pone.0138597
27. Ribéreau-Gayon, P.; Sapis, J. C. (1965). "On the presence in wine of tyrosol, tryptophol, phenylethyl alcohol and gamma-butyrolactone, secondary products of alcoholic fermentation". Comptes Rendus de l′Académie des Sciences, Série D. 261 (8): 1915–1916. PMID 4954284. (Article in French)
28. National Center for Biotechnology Information. PubChem Compound Database; CID=96461, https://pubchem.ncbi.nlm.nih.gov/compound/96461 (accessed Jan. 10, 2019).
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2019-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明