博碩士論文 106827605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.139.72.14
姓名 秦莫鈞(Mergen Chinbat)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱
(Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要

痤瘡皮膚炎桿菌(痤瘡丙酸桿菌)Cutibacterium acnes (C. acnes),為一種常見的皮膚細菌,其過度生長與尋常痤瘡的發生有關。人的皮膚和腸道細菌可以通過發酵來發電。基於細菌的這種發電能力, 我們測試了利用直鏈澱粉 amylose 發酵的表皮葡萄球菌Staphylococcus epidermidis(S. epi)發酵能否通過發電來抑制痤瘡丙酸桿菌的生長。我們發現,當各種益生元介導的發酵過程中,人的腸道和皮膚細菌可以產生更高的電能。我們選擇了最常見的益生元,葡萄糖和甘油,以測量來自腸道的鼠李糖乳桿菌 Lactobacillus rhamnosus(L. rhamnosus)、大腸桿菌 Escherica coli(E. coli)、肺炎克雷伯菌 Klebseilla pneumoniae(K. pneumoniae)和來自皮膚的痤瘡皮膚炎桿菌、表皮葡萄球菌、金黃色葡萄球菌 Staphylococcus aureus(S. aureus)產生的電。我們已經測試了三種不同的益生元, 椰油酸甘油酯 Glyceryl cocoate(PEG-7)、一水合乳糖乳糖 Alpha lactose monohydrate
(ALM),直鏈澱粉 Amylose(Amy),用於測量益生菌介導的表皮葡萄球菌之發電量。
直鏈澱粉介導的表皮葡萄球菌發酵顯示出最高的發電量。我們的結果表明,表皮葡萄球菌可以通過在體內和體外產生電荷來介導直鏈澱粉的發酵,從而增強其對痤瘡丙酸桿菌生長的抑製作用。

關鍵詞:痤瘡丙酸桿菌,表皮葡萄球菌,鼠李糖乳桿菌,大腸桿菌,肺炎克雷伯菌,金黃色葡萄球菌,椰油酸甘油酯,一水合乳糖乳糖,直鏈澱粉
摘要(英) 3
Abstract
The overgrowth of Cutibacterium acnes (C. acnes), a commensal skin bacterium, has been
associated with the progression of acne vulgaris. Human skin and gut bacteria can produce
electricity by fermentation. Based on this electricity producing ability of bacteria we have tested to
check whether Staphylococcus epidermidis (S. epi) fermentation with Amylose can inhibit the
growth of C. acnes by producing electricity. We found that human gut and skin bacteria can
produce significantly higher electricity when the fermentation mediated by various prebiotics. We
have selected glucose and glycerol which are most common prebiotics for measuring the
production of electricity of bacteria from gut Lactobacillus rhamnosus (L. rhamnosus), Escherica
coli (E. coli), Klebseilla pneumoniae (K. pneumoniae) and bacteria from skin C. acnes, S. epi,
Staphylococcus aureus (S. aureus). We have tested 3 different prebiotics Glyceryl cocoate (PEG-
7), Alpha lactose monohydrate (ALM), Amylose (Amy) for measuring prebiotic mediated
production of electricity from S. epi. The Amylose mediated fermentation of S. epi has shown the
highest production of electricity. Our results demonstrated that S. epi can mediate fermentation of
Amylose to enhance its inhibitory effects on C. acnes growth by producing electicity in vivo and
in vitro.
Keywords: C. acnes, S. epi, L. rhamnosus, E. coli, K. pneumoniae, S. aureus, PEG-7, ALM, Amy
關鍵字(中) ★ 痤瘡丙酸桿菌
★ 表皮葡萄球菌
★ 鼠李糖乳桿菌
★ 大腸桿菌
★ 肺炎克雷伯菌
★ 金黃色葡萄球菌
★ 椰油酸甘油酯
★ 一水合乳糖乳糖
★ 直鏈澱粉
關鍵字(英)
論文目次 Table of Contents
摘要 II
Abstract III
Acknowledgments IV
Abbreviations I
Chapter 1. Introduction 1
1.1 Microbiome in general 1
1.2 The human skin microbiome 1
1.3 Host-microbiome interaction 2
1.4 Skin probiotic bacteria 2
1.5 Skin prebiotics 3
1.6 Extracellular electron transfer 3
1.7 S. epi 4
1.8 C. acnes 4
Chapter 2. Methods 5
2.1 Ethics statement. 5
2.2 Bacterial culture. 5
2.3 Fermentation of bacteria. 5
2.4 Detection of bacterial electricity. 6
2.5 The interference of S. epidermidis with the growth of C. acnes in vitro. 6
2.6 S. epi against C. acnes in vivo. 7
2.7 Statistical analysis. 7
Chapter 3. Results 8
3.1 Glucose induces electricity production by L. rhamnosus 8
3.2 Glucose induces electricity production by E. coli. 9
3.3 Glucose induces electricity production by K. pneumoniae. 10
3.4 Glycerol induces electricity production by C. acnes. 11
3.5 Glycerol induces electricity production by S. epi 12
3.6 Glycerol induces electricity production by S. aureus 13
3.7 Different carbon sources for bacterial fermentation and growth. 14
3.8 Fermentation of S.epi with Amy 15
3.9 Amylose induces electricity production by S. epi 15
3.10 Amylose induces electricity production by C. acnes 16
3.11 Different doses of flavin mononucleotide (FMN) 17
3.12 The interference of S. epi with growth of C. acnes in vivo 18
3.13 The interference of S. epi with growth of C. acnes in vivo 19
Chapter 4. Discussion and Conclusion 20
References 22
參考文獻 References
1. Hand TW. The Role of the Microbiota in Shaping Infectious Immunity. Trends Immunol. 2016 Oct;37(10):647-658. doi: 10.1016/j.it.2016.08.007. Epub 2016 Sep 5. PMID: 27616558; PMCID: PMC5048567.
2. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011 Apr;9(4):244-53. doi: 10.1038/nrmicro2537. Erratum in: Nat Rev Microbiol. 2011 Aug;9(8):626. PMID: 21407241; PMCID: PMC3535073.
3. Chen YE, Tsao H. The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol. 2013 Jul;69(1):143-55. doi: 10.1016/j.jaad.2013.01.016. Epub 2013 Mar 13. PMID: 23489584; PMCID: PMC3686918.
4. Roudsari MR, Karimi R, Sohrabvandi S, Mortazavian AM. Health effects of probiotics on the skin. Crit Rev Food Sci Nutr. 2015;55(9):1219-40. doi: 10.1080/10408398.2012.680078. PMID: 24364369.
5. Yang AJ, Marito S, Yang JJ, Keshari S, Chew CH, Chen CC, Huang CM. A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. Int J Mol Sci. 2018 Dec 20;20(1):14. doi: 10.3390/ijms20010014. PMID: 30577530; PMCID: PMC6337527.
6. Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, Two A, Gallo RL, Huang CM. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014 Jan;98(1):411-24. doi: 10.1007/s00253-013-5394-8. Epub 2013 Nov 22. PMID: 24265031; PMCID: PMC3888247.
7. Keshari S, Balasubramaniam A, Myagmardoloonjin B, Herr DR, Negari IP, Huang CM. Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int J Mol Sci. 2019 Sep 11;20(18):4477. doi: 10.3390/ijms20184477. PMID: 31514281; PMCID: PMC6769796.

8. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria
SamuelH. Light, Raphaël Méheust, JessicaL. Ferrell, Jooyoung Cho, David Deng, Marco Agosto ni, Anthony T. Iavarone, Jillian F. Banfield, Sarah E. F. D’Orazio, Daniel A. Portnoy Proceedings of the National Academy of Sciences Dec 2019, 116 (52) 26892-
26899; DOI: 10.1073/pnas.1915678116

9. Keshari S, Balasubramaniam A, Myagmardoloonjin B, Herr DR, Negari IP, Huang CM. Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int J Mol Sci. 2019 Sep 11;20(18):4477. doi: 10.3390/ijms20184477. PMID: 31514281; PMCID: PMC6769796.
10. Kim MY, Kim C, Ainala SK, Bae H, Jeon BH, Park S, Kim JR. Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry. 2019 Feb;125:1-7. doi: 10.1016/j.bioelechem.2018.08.002. Epub 2018 Aug 13. PMID: 30172057.
11. Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature. 2018 Oct;562(7725):140-144. doi: 10.1038/s41586-018-0498-z. Epub 2018 Sep 12. PMID: 30209391; PMCID: PMC6221200.
12. Meghji, S., et al., Staphylococcus epidermidis produces a cell-associated proteinaceous fraction which causes bone resorption by a prostanoid-independent mechanism: relevance to the treatment of infected orthopaedic implants. British journal of rheumatology, 1997. 36(9): p. 957-963.
13. Kao MS, Huang S, Chang WL, Hsieh MF, Huang CJ, Gallo RL, Huang CM. Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J. 2017 Apr;12(4):10.1002/biot.201600399. doi: 10.1002/biot.201600399. Epub 2017 Feb 8. PMID: 27982519; PMCID: PMC5378629.
14. Stenesh, J., The Citric Acid Cycle, in Biochemistry. 1998, Springer. p. 273-291.

15. Cate RL, Roche TE. Function and regulation of mammalian pyruvate dehydrogenase complex. Acetylation, interlipoyl acetyl transfer, and migration of the pyruvate dehydrogenase component. J Biol Chem. 1979 Mar 10;254(5):1659-65. PMID: 762164.
16. Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single- chamber microbial fuel cell. Environ Sci Technol. 2005 Jan 15;39(2):658-62. doi: 10.1021/es048927c. PMID: 15707069.
17. Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance.Aubin GG, Portillo ME, Trampuz A, Corvec S Med Mal Infect. 2014 Jun; 44(6):241-50.
18. Propionibacterium in Shoulder Arthroplasty: What We Think We Know Today.Hsu JE, Bumgarner RE, Matsen FA 3rd J Bone Joint Surg Am. 2016 Apr 6; 98(7):597-606.
19. Propionibacterium acnes colonization of the human shoulder.Patel A, Calfee RP, Plante M, Fischer SA, Green A J Shoulder Elbow Surg. 2009 Nov-Dec; 18(6):897-902.
20. Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance.Aubin GG, Portillo ME, Trampuz A, Corvec S Med Mal Infect. 2014 Jun; 44(6):241-50.
21. Prognostic factors for bacterial cultures positive for Propionibacterium acnes and other organisms in a large series of revision shoulder arthroplasties performed for stiffness, pain, or loosening.Pottinger P, Butler-Wu S, Neradilek MB, Merritt A, Bertelsen A, Jette JL, Warme WJ, Matsen FA 3rd J Bone Joint Surg Am. 2012 Nov 21; 94(22):2075-83.
指導教授 黃俊銘 陳純娟(Eric Chun-Ming Huang Chun-Chuan Chen) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明