博碩士論文 107022004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.147.104.120
姓名 鄭偉成(Wei-Cheng Zheng)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 使用動態門檻值選取對衛星影像進行非監督式變遷偵測
(Unsupervised Change Detection Using Dynamic Threshold Selection in Remotely Sensed Images)
相關論文
★ 結合多種遙測衛星數據觀測湄公河水資源變化★ 利用多時期之衛星影像改進孟加拉地區之地表水量化
★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化
★ 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形
★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形★ 利用衛星影像間接建立全台海岸地形模型
★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
★ 以自相似算法進行衛星影像融合和水線判釋★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測
★ 利用衛星遙測資訊於稻米產量預測★ 利用ICESat-2及Sentinel-2反演南海近岸水深
★ 利用行動測深系統產製淺水區深度模型★ 以多元衛星影像監測青藏高原湖泊長期水量變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 變遷偵測技術在自然資源管理和監控土地覆蓋/使用扮演一個不可或缺的角色,過去十幾年,透過時序性多光譜衛星影像的各種變遷偵測方法已被提出,雖然多數方法足以區分主要的變異,但判釋後的變異點易屬季節變化所致。此外,有些方法需根據反覆試驗或經驗法則來監督特定土地覆蓋/使用類型的門檻值,本研究目標為降低監測區域季節性或長週期反覆變化所造成之誤判,並在無監督式的情況下自動進行變遷偵測。
因此,我們提出了基於一系列工作流程的完全無監督式變遷偵測方法,為了容許植被/作物區的季節性物候在監測區所引起之正常光譜變化,建立2017年至2019年的SPOT-6/7和Sentinel-2的影像資料庫,以識別每個像元的時間特徵,可用來設置新影像的容許值,為了重疊來自不同衛星的每個像元,重新投影和重新採樣為必需的過程,Sentinel-2產品的1C級也需要進行額外的大氣校正,以減少來自不同大氣條件的變化。本研究採用基於虛擬不變點的相對影像正規化技術來調整像元值的範圍,經過以上步驟,提出的方法將每個像元的標準差和平均值記錄在歷史影像資料庫中,如果新影像像元值落在該像元的容許值中,我們視為未變異的像元。
實驗結果透過臺灣宜蘭縣的假色衛星影像(近紅外光-紅光-綠光)來實行,提出的實用方法能檢測突發的變異區,亦可偵測出季節性變化,自我驗證部分,總體準確性為97%,kappa為93%。與現地資料相比,本研究可以減少39%因季節性變化所造成的誤判。
摘要(英) The change detection (CD) technique plays an essential role in natural resource management and land cover/use monitoring (LCUM). Over the past decades, various approaches have been proposed for CD by multitemporal and multispectral satellite imageries. Although most of these approaches are enough to distinguish primary change polygons, the recognized changes are prone to seasonal variability. Moreover, some approaches supervise model thresholds by tuning the optimized parameters for a specific land cover/use type. Our purpose is to suppress seasonal variability of detected areas and to implement change detection automatically.
Therefore, we propose a fully unsupervised CD method based on a retrospective analysis workflow. In order to suppress extra noise of detected areas caused by the seasonal phenology of vegetated/crop areas, a database consists of SPOT-6/7 and Sentinel-2 imagery from 2017 to 2019 is built to recognize each pixel′s temporal signature, which can be used to set up a tolerant threshold for the coming images. To co-register each pixel from different satellites, reprojection and resample are necessary procedures. Level-1C product of Sentinel-2 also requires additional atmospheric correction to reduce specific changes from different atmospheric conditions. We further adopt the relative radiometric normalization (RRN) technique based on pseudo-invariant features (PIF) to rearrange pixel values. After the above steps, the proposed method records the standard deviation and mean values of each pixel in the historical image database. If the pixel value of the coming image is within the range of tolerance, we recognize it as an unchanged pixel.
Experimental results are carried out using false color compositions (NIR-R-G) satellite imageries in Yilan County, Taiwan. The proposed method would be more practical and can detect abrupt change areas. In our preliminary results, the overall accuracy of CD as compared against visual inspection is 97%, with a kappa value of 93%. This workflow can reduce 39% of seasonal changes that are likely to be misidentified from a single pair of images.
關鍵字(中) ★ 變遷偵測
★ 動態門檻值選取
★ 多時序分析
★ 虛擬不變點
★ 相對輻射正規化
關鍵字(英) ★ Change Detection
★ Dynamic Threshold Selection
★ Multitemporal Analysis
★ Pseudo Invariant Features
★ Relative Radiometric Normalization
論文目次 Table of Contents

Chapter 1 Introduction 1
1.1. Background and Motivations 1
1.2. Challenges in Change Detection 3
1.3. Architecture 5
Chapter 2 Related Work 6
2.1. Algebra Based Approach 6
2.2. Transformation 10
2.3. Classification Based Method 11
2.4. Geographic Information System (GIS) 11
2.5. Visual Analysis 12
Chapter 3 Workflow and Study Area 13
3.1. Workflow 13
3.2. Land Use of Yilan 15
Chapter 4 Data and Methodology 18
4.1. SPOT-6/7 19
4.2. Sentinel-2 21
4.3. Sheet Line System by Coordinates 22
4.4. Dynamic Threshold Selection (DTS) 24
4.5. CD-ADMM 36
Chapter 5 Experimental Results 41
5.1. Results of the Dynamic Threshold Selection Method 41
5.2. Preliminary Results of CD-ADMM 53
Chapter 6 Discussions 55
Chapter 7 Conclusions 65
7.1. Summary of the Proposed Method 65
7.2. Future Work 66
Reference 67
參考文獻 [1] Z. Hassan, R. Shabbir, S. S. Ahmad, A. H. Malik, N. Aziz and A. Butt, "Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan," SpringerPlus, p. 5(1): 812., 25 5 2016.
[2] N. C. U. Center for Space and Remote Sensing Research, “Integrated Land Use Monitoring,” Urban and Rural Development Branch, Construction and Planning Agency, Ministry of the Interior, 20 5 2020. [Online]. Available: https://landchg.tcd.gov.tw/Module/RWD/Web/. [Accessed 20 5 2020].
[3] H. S. University, "Radiometric Corrections," Humboldt State University, 2015. [Online]. Available: http://gsp.humboldt.edu/olm_2016/courses/GSP_216_Online/lesson4-1/radiometric.html. [Accessed 25 5 2020].
[4] L.-Y. Chang, Change Detection Using Optical Satellite Images, Taoyuan City : National Central University, 2013.
[5] T. Celik, "Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering," IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 772-776, 7 August 2009.
[6] I. Manakos and M. Braun, Land Use and Land Cover Mapping in Europe: Practices & Trends, Springer, 2014.
[7] H. A. Afify, "Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area," Alexandria Engineering Journal, vol. 50, pp. 187-195, 20 January 2011.
[8] M. Alsadat Madanian, A. Soffianian and S. Fakheran, "Monitoring Land Use/Cover Changes Using Different Change Detection Techniques (Case Study: Falavarjan Area, Isfahan, Iran)," in International Conference on Applied Life Sciences (ICALS2012), Turkey, 2012.
[9] M. S and A. Shettya, "A Comparative Study of Image Change Detection Algorithms in MATLAB," in International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE 2015), INDIA, 2015.
[10] A. SINGH, "Review Article Digital change detection techniques using remotely-sensed data," International Journal of Remote Sensing, vol. 10, no. 6, pp. 989-1003, 1989.
[11] M. Nordberg and J. Evertson, Vegetation Index Differencing and Linear Regression for Change Detection in a Swedish Mountain Range Using Landsat TM and ETM+ Imagery, vol. 16, Sweden: Wiley Online Library, 2005, pp. 139-149.
[12] D. Egamberdieva and M. Öztürk, Vegetation of Central Asia and Environs, Springer, 2018.
[13] J. Chen, P. Gong, C. He and R. Pu, "Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis," Photogrammetric Engineering and Remote Sensing, vol. 69, no. 4, p. 369–379, April 2003.
[14] S. Rahman and V. Mesev, "Change Vector Analysis, Tasseled Cap, and NDVI-NDMI for Measuring Land Use/Cover Changes Caused by a Sudden Short-Term Severe Drought: 2011 Texas Event," Remote Sens, vol. 11, no. 19, p. 2217, 8 8 2019.
[15] K. R. J. and T. G. S., "The Tasselled Cap -- A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT," in Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, 1976.
[16] I. o. M. &. Metallurgy, Remote sensing: an operational technology for the mining and petroleum industries, Springer, 2014.
[17] K.-c. Chang, Y.-P. Tian and H.-C. Shih, "Using Multi-temporal and PCA+NDVI to Improve the Accuracy and Integrity of Land Cover Classification," Journal of Geographical Research, no. 57, pp. 49-60, November 2012.
[18] R. A. Weismiller, S. J. Kristof, D. K. Scholz, P. E. Anuta and S. A. Momin, "Change detection in coastal zone environments," Photogrametric Engineering and Remote Sensing, vol. 43, no. 12, pp. 1533-1539, December 1977.
[19] L. Huiping and Z. Qiming, "Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison," International Journal of Remote Sensing, vol. 25, no. 5, p. 1037–1050, 10 March 2004.
[20] V. Walter, "Object-based classification of remote sensing data for change detection," ISPRS Journal of Photogrammetry & Remote Sensing, vol. 58, p. 225–238, 2004.
[21] J. Louis, V. Debaecker, B. Pflug, M. Main-Knorn, J. Bieniarz, U. Mueller-Wilm, E. Cadau and F. Gascon, "Sentinel-2 Sen2Cor: L2A Processor for users," in Proceedings Living Planet Symposium 2016, Prague, Czech Republic, 2016.
[22] C.-H. Lin, . F. Ma, . C.-Y. Chi and C.-H. Hsieh , "A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion," IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3, pp. 1652 - 1667, 14 November 2017.
[23] M.-D. Iordache , J. M. Bioucas-Dias and . A. Plaza, "Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing," IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 11 , pp. 4484 - 4502, 07 May 2012.
[24] M. A. Figueiredo, J. B. Dias, J. P. Oliveira and R. D. Nowak, "On Total Variation Denoising: A New Majorization-Minimization Algorithm and an Experimental Comparisonwith Wavalet Denoising," in 2006 International Conference on Image Processing, Atlanta, GA, USA, 2006.
[25] Y. C. Government, Draft of Yilan County Regional Plan, Yilan County Government, 2020.
[26] C. f. S. a. R. S. Research, "SPOT OPEN SATELLITE DATA," National Central University, [Online]. Available: http://140.115.110.11/index_WMTS.php. [Accessed 30 1 2020].
[27] CSRSR, "System and Product," CSRSR, [Online]. Available: https://www1.csrsr.ncu.edu.tw/rsrs/rsrs_product.php. [Accessed 20 May 2020].
[28] USGS, "EarthExplorer," [Online]. Available: https://earthexplorer.usgs.gov. [Accessed 20 2 2020].
[29] X. Yang and C. P. Lo, "Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images," Photogrammetric Engineering and Remote Sensing, vol. 66, no. 8, pp. 967-980, August 2000.
[30] C.-Y. Chi, W.-C. Li and C.-H. Lin, Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications., London, New York: CRC Press, 2017.
[31] Y. Liu, F. Condessa , J. Bioucas-Dias , J. Li and A. Plaza, "Convex formulation for hyperspectral image classification with superpixels," in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016.
[32] C. H. Lin, W. K. Ma, W. C. Li, C. Y. Chi and A. M. Ambikapathi, "Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 10, pp. 5530-5546, 1 October 2015.
[33] L. Pasanen and L. Holmström, "Bayesian scale space analysis of temporal changes in satellite images," Journal of Applied Statistics, vol. 42, no. 1, pp. 50-70, January 2015.
[34] N. Falco, P. R. Marpu and J. Atli Benediktsson, "A toolbox for unsupervised change detection analysis," International Journal of Remote Sensing, vol. 37, no. 7, p. 1505–1526, March 2016.
[35] M. V. Afonso, . J. M. Bioucas-Dias and . M. A. T. Figueiredo, "An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems," IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 681 - 695, March 2011.
[36] T. Goldstein and S. Osher, "The Split Bregman Method for L1-Regularized Problems," SIAM Journal on Imaging Sciences, vol. 2, no. 2, p. 323–343, 01 April 2009.
[37] C. A. Micchelli, L. Shen and Y. Xu, "Proximity algorithms for image models: denoising," Inverse Problems, vol. 27, no. 4, p. 045009, 17 March 2011.
指導教授 曾國欣(Kuo-Hsin Tseng) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明