博碩士論文 107221019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:100.24.122.117
姓名 曾柏逸(Po-I Tseng)  查詢紙本館藏   畢業系所 數學系
論文名稱 卷積稀疏字典學習及其在影像超解析度的應用
(Convolutional Sparse Dictionary Learning with Application to Single Image Super-Resolution)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究★ 非線性耦合動力網路的同步現象分析
★ 邊界層和內部層問題的穩定化有限元素法★ 數種不連續有限元素法求解對流佔優問題之數值研究
★ 某個流固耦合問題的有限元素法數值模擬★ 高階投影法求解那維爾-史托克方程組
★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法★ 二維非線性淺水波方程的Lax-Wendroff差分數值解
★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems
★ 生成對抗網路在影像填補的應用★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-1以後開放)
摘要(中) 影像超解析度是影像處理領域裡的一個重要的議題,它主要的目的是希望經由特定演算法將一張或結合多張的低解析度影像生成一張高解析度影像。本文的目標是改進 Gu 等人 [9] 所發展的求解單張影像超解析度方法,我們提出一種以迭代優化為基礎提高影像解析度的預測校正方法。首先,我們概括回顧傳統稀疏表示與字典學習的問題及如何運用交錯方向乘子法求解上述問題。然後考慮卷積稀疏表示與字典學習的問題,整合交錯方向乘子法、 Fourier 轉換、Hadamard 乘積和 Sherman-Morrison 公式等技術來加速求解上述卷積稀疏字典學習問題。接著,我們運用卷積稀疏字典學習理論到數學影像處理問題上,提出一種單張影像提高影像解析度的預測校正迭代程序,這也是本文最主要的貢獻。最後,數值模擬實驗驗證了此方法的有效性及效能。
摘要(英) Image super-resolution is an essential issue of image processing, and its primary goal is to use single or multiple low-resolution images to generate a high-resolution image through specific algorithms. The objective of this thesis is to improve the method developed by Gu et al. [9] for solving single image super-resolution problems. We propose a novel iterative refinement-based prediction-correction approach. First, we give a general review of the traditional sparse representation and dictionary learning problems and solve the problems using the alternating direction method of multipliers (ADMM).
Second, we consider the convolutional sparse representation and dictionary learning problems,
and then integrate all the techniques of ADMM, Fourier transform, Hadamard product,
and Sherman-Morrison formula to speed up the computations for solving the problems.
Then we apply the convolutional sparse dictionary learning theory to mathematical image processing.
We propose a prediction-correction iterative approach
for the image processing of single image super-resolution
that is the main contribution of the thesis.
Finally, numerical experiments are performed to validate the effectiveness and efficiency
of the newly proposed approach.
關鍵字(中) ★ 稀疏表示
★ 卷積稀疏表示
★ 字典學習
★ 影像超解析度
★ 迭代優化
關鍵字(英) ★ sparse representation
★ convolutional sparse representation
★ dictionary learning
★ image super-resolution
★ iterative refinement
論文目次 1 Introduction 1
2 Sparse representation and dictionary learning 4
2.1 Original sparse representation problem 4
2.1.1 Two dual `0 minimization problems 4
2.1.2 General sparse representation problem 7
2.2 Alternating direction method of multipliers (ADMM) 7
2.2.1 Derivation of the ADMM: augmented Lagrangian 8
2.2.2 Scaled form of the augmented Lagrangian 8
2.2.3 ADMM for `1-norm sparse representation problem 9
2.2.4 Solving sparse representation problem 9
2.3 Sparse dictionary learning problem 13
2.3.1 Methods for solving subproblems of coefficient Z 15
2.3.2 Methods for solving subproblems of dictionary D 16
2.4 Convergence and stopping criterion of ADMM 17
3 Convolutional sparse representation and dictionary learning 18
3.1 Convolutional sparse representation problem 18
3.1.1 ADMM for convolutional sparse representation 20
3.1.2 Sherman-Morrison formula 23
3.2 Convolutional sparse dictionary learning problem 25
4 Application to single image super-resolution 28
4.1 Single image super-resolution 28
4.2 Residuals of training images 31
4.3 A prediction-correction approach 33
5 Numerical experiments 35
5.1 Grayscale images 38
5.2 Color images 38
5.3 Promotion to higher resolution 51
6 Summary and conclusion 58
References 59
參考文獻 [1] A. Ali and R. J. Tibshirani, The generalized lasso problem and uniqueness, Electronic Journal of Statistics, 13 (2019), pp. 2307-2347.
[2] V. Anari, F. Razzazi, and R. Amirfattahi, A sparse analysis-based single image super-resolution, Computers, 8 (2019), 41.
[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J.Eckstein, Distributed optimizationand statistical learning via the ADMM, Foundations and Trends in Machine
Learning, 3 (2010), pp. 1-122.
[4] H. Bristow, A. Eriksson, and S. Lucey, Fast convolutional sparse coding, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 301-308.
[5] H. Bristow and S. Lucey, Optimization methods for convolutional sparse coding, arXiv:1406.2407v1 [cs.CV], 2014.
[6] E. Cand`es, M. Rudelson, T. Tao, and R. Vershynin, Error correction via linear programming, IEEE Symposium on Foundations of Computer Science (FOCS), 2005, pp. 295-308.
[7] D. L. Donoho, For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution, Communications on Pure and Applied Mathematics, 59 (2006), pp. 797-829.
[8] D. L. Donoho, For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution, Communications on Pure and Applied Mathematics, 59 (2006), pp. 907-934.
[9] S. Gu,W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang, Convolutional sparse coding for image super-resolution, IEEE International Conference on Computer Vision, 2015, pp. 1823-1831.
[10] F. Heide, W. Heidrich, and G. Wetzstein, Fast and flexible convolutional sparse coding, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5135-5143.
[11] Q. Ning, K. Chen, L. Yi, C. Fan, Y. Lu, and J.Wen, Image super-resolution via analysis sparse prior, IEEE Signal Processing Letters, 20 (2013), pp. 399-402.
[12] T. Ogawa and M. Haseyama, Image inpainting based on sparse representations with a perceptual metric, EURASIP Journal on Advances in Signal Processing, 179 (2013), 26 pages.
[13] B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381 (1996), pp. 607-609.
[14] B. A. Olshausen and D. J. Field, Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37 (1997), pp. 3311-3325.
[15] G.-J. Peng, Joint and direct optimization for dictionary learning in convolutional sparse representation, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), pp. 559-573.
[16] G.-J. Peng, Adaptive ADMM for dictionary learning in convolutional sparse representation, IEEE Transactions on Image Processing, 28 (2019), pp. 3408-3422.
[17] B. Shin, W. Hu, Y. Zhang, and Y.-J. Zhang, Image inpainting via sparse representation, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009, pp. 697-700.
[18] Y. Sharon, J.Wright, and Y. Ma, Computation and relaxation of conditions for equivalence between l1 and l0 minimization, UIUC Technical Report UILUENG-07-2008, 2007.
[19] H. Sreter and R. Giryes, Learned convolutional sparse coding, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2191-2195.
[20] R. J. Tibshirani, The lasso problem and uniqueness, Electronic Journal of Ststistics, 7 (2013), pp. 1456-1490.
[21] X.-Y. Wang, T.-Z. Huang , and L.-J. Deng, Single image super-resolution based on approximated Heaviside functions and iterative refinement, PLoS ONE, 13 (2018), 24 pages.
[22] B.Wohlberg, Efficient convolutional sparse coding, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 7173-7177.
[23] B. Wohlberg, Convolutional sparse representation of color images, IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), 2016, pp. 57-60.
[24] B. Wohlberg, Efficient algorithms for convolutional sparse representations, IEEE Transactions on Image Processing, 25 (2016), pp. 301-315.
[25] J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution via sparse representation, IEEE Transactions on Image Processing, 19 (2010), pp. 2861-2873.
[26] H. Zhang and V. M.Patel, Convolutional sparse coding-based image decomposition, British Machine Vision Conference (BMVC), 125 (2016), 11 pages.
[27] H. Zhang and V. M.Patel, Convolutional sparse and low-rank coding-based image decomposition, IEEE Transactions on Image Processing, 27 (2018), pp. 2121-2133.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明