博碩士論文 107222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.140.198.173
姓名 李明晏(Ming-Yan Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Search for Higgs boson decays to llγ with the CMS detector in proton-proton collisions at √s = 13 TeV with 137 fb-1)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ TCAD simulation of silicon detector★ Assembly and Beam Test Analysis of sPHENIX INTT Detector
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 本論文研究希格斯粒子衰變至Z玻色子及光子之衰變頻道,其中Z玻色子 衰變至雙輕子,雙輕子在此為電子對與渺子對。本分析使用數據為大型強子對 撞機之質子-質子對撞於中心質量13兆電子伏特收集於緊湊渺子線圈偵測器,對 應光亮度為137fb-1。本分析使用動力學重整(kinematic refit)、終態光子復原 (final state radition photon recovery)及多變量分析 (MultiVariate Analysis)改善 分析靈敏度,這些方法相較於以篩選條件為主的分析改善了24%的靈敏度。預 測觀測上限在95%信心水準下,可得到1.7倍標準模型觀測值對應於顯著水準1.4 個標準差。
摘要(英) This thesis describes the Higgs decays to dilepton plus one photon with dilepton from the Z pole. This analysis is performed using a dataset recorded by the CMS experiment at the LHC from proton-proton collisions at a center of mass energy of 13TeV corresponding to an integrated luminosity of 137 fb−1. This analysis inte- grated the kinematic refit, final state photon radiation recovery ,and multivariate analysis(MVA) methods to boost the sensitivity. These techniques bring a 24% improvement compare to the cutbased analysis. Limits are set on the cross-section of a standard model Higgs boson for 125GeV at 95% confidence level is about 1.7 times the standard model prediction for the expected results with the p-value corresponding 1.4σ.
關鍵字(中) ★ 大強子對撞機
★ 緊湊渺子偵測器
★ 希格斯粒子
★ 稀有希格斯衰變
關鍵字(英) ★ LHC
★ CMS
★ Higgs
★ rare decay
論文目次 1 Introduction and theory overview 1
1.1 StandardModel............................... 1
1.1.1 Gauge theory of electromagnetic field........ 4
1.1.2 Electroweak theory......................... 5
1.1.3 Higgs mechanism.......................... 7
1.2 Higgs production and decays at LHC .................. 9
1.3 H→Zγ→llγ............................... 12
1.3.1 Theoretical aspects ......................... 12
1.3.2 Review for previous results .................... 14
2 Experimental apparatus 17
2.1 LargeHadronCollider ........................... 17
2.2 CompactMuonSolenoid.......................... 21
2.2.1 Superconducting solenoid..................... 23
2.2.2 Trackersystem ........................... 24
2.2.3 Electromagnetic Calorimeter ................... 25
2.2.4 Hadronic Calorimeter ....................... 26
2.2.5 Muon System ............................ 27
2.2.6 Trigger System ........................... 29
3 Analysis strategies 31
3.1 Datasets and Simulation .......................... 32 3.1.1 Data samples ............................ 32
3.1.2 MC samples............................. 32
3.1.3 Pileup reweighting......................... 35
3.1.4 Photon internal conversion .................... 36
3.2 EventSelections............................... 39
3.2.1 Triggers ............................... 39
3.2.2 Muons................................ 44
3.2.3 Electrons............................... 46
3.2.4 Photons ............................... 47
3.2.5 Summary of selections....................... 50
3.3 Final state radiation recovery ....................... 54
3.4 Kinematic fit................................. 55
3.5 Kinematic MVA ............................... 58
3.5.1 Training setup............................ 58
3.5.2 Training variables.......................... 58
3.5.3 Validation .............................. 62
3.6 DijetMVA .................................. 62
3.6.1 Training setup............................ 70
3.6.2 Training variables.......................... 71
3.6.3 Validation .............................. 71
3.7 EventCategorization ............................ 78
3.7.1 Criteria for lepton tag category .................. 79
3.7.2 Determination and criteria of dijet categories.......79
3.7.3 Determination and criteria of untagged categories.....80
3.7.4 Investigation and dropping of boosted category.......83
3.7.5 Improvement compared to cut-based analysis..........86
3.8 Signal and background modeling..................... 86
3.8.1 Signal modeling........................... 87
3.8.2 Resonant background modeling ................. 88
3.8.3 Nonresonant background modeling ............... 88
3.9 Uncertainties................................. 91
3.9.1 Theoretical uncertainties...................... 91
3.9.2 Normalization uncertainty .................... 92
3.9.3 Shape uncertainties......................... 96
3.9.4 Correlation between different datasets.............97
4 Results and summary 111
4.1 Results ....................................111
4.2 Conclusion..................................113
A llγ pT reweighting 121
B L1 prefire problem 123
C MVA variables validation 125
C.1 2017 kinematic MVA variables.......................125
C.2 2018 kinematic MVA variables.......................132
C.3 2017 Dijet MVA variables..........................138
C.4 2018 Dijet MVA variables..........................138
C.5 Shower shape corrections .........................146
C.5.1 Valiation with Z to ee........................146
C.5.2 Valiation with Z→μμγ ......................146
D FitStudies 159
D.1 Bias Study ..................................159
D.2 Fit Range Study ...............................160
D.3 Sideband fTest study ............................162
D.4 MCFitStudy.................................162
E Electron performance for 2017 data 173
E.1 Electron reconstruction...........................173
E.2 Electron performance............................174
參考文獻 [1] Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30 – 61, 2012.
[2] Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30 – 61, 2012.
[3] Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1 – 29, 2012.
[4] Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1 – 29, 2012.
[5] Higgs boson decays to γγ and zγ in models with higgs extensions. Phys. Rev. D, 87:033003, Feb 2013.
[6] CMS Luminosity Measurements for the 2016 Data Taking Period. 3 2017.
[7] Particle-flow reconstruction and global event description with the CMS detector. Particle-flow reconstruction and global event description with the CMS detector. JINST, 12(CMS-PRF-14-001. CMS-PRF-14-001-004. 10):P10003. 82 p, Jun 2017. Replaced with the published ver- sion. Added the journal reference and DOI. All the figures and ta- bles can be found at http://cms-results.web.cern.ch/cms-results/public- results/publications/PRF-14-001 (CMS Public Pages).
√s =13 TeV. [9] Observation of higgs boson decay to bottom quarks. Phys. Rev. Lett.,
[8] CMS luminosity measurement for the 2017 data-taking period at 6 2018.
121:121801, Sep 2018.
[10] Observation of hdecays and vh production with the atlas detector. Physics
Letters B, 786:59 – 86, 2018.
[11] Observation of the higgs boson decay to a pair of τ leptons with the cms
detector. Physics Letters B, 779:283 – 316, 2018.
[12] CMS luminosity measurement for the 2018 data-taking period at s 13 TeV. 5 2019.
[13] Georges Aad et al. Observation of an new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1– 29, 2012.
[14] Georges Aad et al. Search for Higgs boson decays to a photon and a Z boson
in pp collisions at 732:8–27, 2014.
s=7 and 8 TeV with the ATLAS detector. Phys. Lett. B,
cross sections in pp collisions at 10:132, 2011.

[15] Claude Amsler, V Chiochia, S. Visscher, and Ryszard Romaniuk. Calibration of the cms drift tube chambers and measurement of the drift velocity with cosmic rays. Journal of Instrumentation, 5:t03016, 03 2010.
[16] L. Bergström and G. Hulth. Induced higgs couplings to neutral bosons in e+e collisions. Nuclear Physics B, 259(1):137 – 155, 1985.
[17] R.N. Cahn, M.S. Chanowitz, and N. Fleishon. Higgs particle production by h → zγ. Physics Letters B, 82(1):113 – 116, 1979.
[18] Marcela Carena, Ian Low,and Carlos E.M.Wagner. Implications of a Modified Higgs to Diphoton Decay Width. JHEP, 08:060, 2012.
[19] Serguei Chatrchyan et al. Measurement of the inclusive W and Z production
s = 7 TeV with the CMS experiment. JHEP,
[20] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC. Phys. Lett. B, 716:30–61, 2012.
[21] Chian-Shu Chen, Chao-Qiang Geng, Da Huang, and Lu-Hsing Tsai. New
scalar contributions to h → zγ. Phys. Rev. D, 87:075019, Apr 2013.
[22] Mingshui Chen and et al. Higgs measurements in the h to zz to 4l channel
using kinematic fitting technique. CMS Analysis Note, 15/286, 2015.
[23] Yi Chen, Adam Falkowski, Ian Low, and Roberto Vega-Morales. New Observ-
ables for CP Violation in Higgs Decays. Phys. Rev. D, 90(11):113006, 2014.
[24] CMS Collaboration. Cms an-2019/149 – common tools for analyses of higgs
boson decay in the diphoton final state.
[25] CMS Collaboration. Search for a higgs boson decaying into a z boson and a √s = 7 and 8 tev. Phys. Lett. B, 726:587−−609, 2013.
[26] CMSCollaboration. Higgs to 4 leptons with 13 tev with full 2016 dataset.CMS
photon in pp collisions at
Analysis Note, CMS-AN2016-442, 2016.
[27] CMS Collaboration. Search for the decay of a higgs boson in the γ channel in proton-proton collisions at √s= 13 tev. JHEP, 11:152, 2018.
[28] ATLAS Collaboration. Evidence for the higgs-boson yukawa coupling to tau leptons with the atlas detector. 01 2015.
[29] Atlas Collaboration. Searches for the zγ decay mode of the higgs boson and √
s = 13 tev with the atlas detector. Journal of High Energy Physics, 2017(10):112, Oct 2017.
for new high-mass resonances in pp collisions at
[30] CMS Collaboration. Performance of electron reconstruction and selection with the cms detector in proton-proton collisions at sqrt(s) = 8 tev. JINST, 2015.
[31] The CMS collaboration. Measurements of properties of the higgs boson decaying into the four-lepton final state in pp collisions at sqrts=13 tev. J. High Energ. Phys, 2017.
[32] Emlyn Corrin. Development of digital readout electronics for the cms tracker. 04 2003.
[33] P.D.Dauncey, M.Kenzie, N.Wardle, and G.J.Davies. Handling uncertainties in background shapes: the discrete profiling method. Journal of Instrumentation, 10(04):P04015–P04015, apr 2015.
[34] Sally Dawson and Pier Paolo Giardino. Higgs decays to ZZ and Zγ in the standard model effective field theory: An NLO analysis. Phys. Rev. D, 97(9):093003, 2018.
[35] D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. 2/2017, 10 2016.
[36] A. Dedes, K. Suxho, and L. Trifyllis. The decay h → Zγ in the Standard-Model Effective Field Theory. JHEP, 06:115, 2019.
[37] John Ellis. Higgs Physics. (KCL-PH-TH-2013-49. KCL-PH-TH-2013-49. LCTS- 2013-36. CERN-PH-TH-2013-315):117–168. 52 p, Dec 2013. 52 pages, 45 figures, Lectures presented at the ESHEP 2013 School of High-Energy Physics, to appear as part of the proceedings in a CERN Yellow Report.
[38] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett., 13:321–323, Aug 1964.
[39] K. Ackersta et al. Search for anomalous production of dilepton events with missing transverse momentum in e+eicollisions at sqrts= 161 gev and 172 gev. Eur. Phys. J. C, 1998.
[40] James S. Gainer, Wai-Yee Keung, Ian Low, and Pedro Schwaller. Looking for a light higgs boson in the overlooked channel. JHEP, 2011.
[41] James S.Gainer, KunalKumar, Ian Low,and RobertoVega-Morales.Improving the sensitivity of higgs boson searches in the golden channel. JHEP, 2011.
[42] Rebeca Gonzalez Suarez. Recent CMS results and Higgs physics. Mod. Phys. Lett. A, 32(arXiv:1707.05054. 29):1730026. 15 p, Jul 2017. Updated version of the Wine Cheese: Joint Experimental-Theoretical Physics Seminar ’Recent CMS results in top and Higgs physics’ given at Fermilab, 20 November 2015. To appear in Mod. Phys. Lett. A.
[43] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Pas- sarino, and R. Tanaka (Eds.). Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables. CERN-2011-002, CERN, Geneva, 2011.
[44] G.S.Guralnik, C.R.Hagen, and T.W.B.Kibble. Global conservation law sand massless particles. Phys. Rev. Lett., 13:585–587, Nov 1964.
[45] J Hauser, D Acosta, E Boyd, B Bylsma, Rick Cousins, Alexey Drozdetskiy, S Durkin, J Gilmore, Jiji Gu, S Haapanen, A Korytov, Shulin Lee, T Ling, A Madorsky, Misha Matveev, M Mey, Brian Mohr, J Mumford, Paul Padley, and Yuke Zheng. Experience with trigger electronics for the csc system of cms. 01 2004.
[46] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13:508–509, Oct 1964.
[47] Peter W. Higgs. Broken symmetries, massless particles and gauge fields. Phys. Lett., 12:132–133, 1964.
[48] Jennifer Jentzsch. Pixel detector modules performance for ATLAS IBL and future pixel detectors. PhD thesis, Tech. U., Dortmund (main), 3 2015.
[49] Thomas Junk. Confidence level computation for combining searches with small statistics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 434(2):435 – 443, 1999.
[50] Vardan Khachatryan et al. The CMS trigger system. JINST, 12(01):P01020, 2017.
[51] Alexander Yu. Korchin and Vladimir A. Kovalchuk. Polarization effects in the Higgs boson decay to γZ and test of CP and CPT symmetries. Phys. Rev. D, 88(3):036009, 2013.
[52] A. Koutoulaki. The itk strip tracker for the phase-ii upgrade of the atlas detector of the hl-lhc. Journal of Instrumentation, 12:C04022–C04022, 04 2017.
[53] Ian Low, Joseph Lykken, and Gabe Shaughnessy. Singlet scalars as higgs boson imposters at the large hadron collider. Phys. Rev. D, 84:035027, Aug 2011.
[54] Badder Marzocchi. Simulation of the cms electromagnetic calorimeter re- sponse at the energy and intensity frontier. Journal of Physics: Conference Series, 1162:012007, 01 2019.
[55] Esma Mobs. The CERN accelerator complex - August 2018. Complexe des accélérateurs du CERN - Août 2018. Aug 2018. General Photo.
[56] Jorge Molina, CMS Warsaw, Krzysztof Pozniak, Ryszard Romaniuk, and Wo- jciech Zabolotny. Performance of cms hadron calorimeter timing. Journal of Instrumentation, 5:T03013, 03 2010.
[57] A L Read. Presentation of search results: the CLs technique. Journal of Physics G: Nuclear and Particle Physics, 28(10):2693–2704, sep 2002.
[58] Tai Sakuma. Cutaway diagrams of CMS detector. May 2019.
[59] A.M.Sirunyan etal. Performance of the CMS muon detector and muon reconstruction s =13 TeV. JINST, 13(06):P06015,
[60] Yi Sun, Hao-Ran Chang, and Dao-Neng Gao. Higgs decays to gamma l+ l- in
struction with proton-proton collisions at 2018.
the standard model. JHEP, 05:061, 2013.
[61] M. Vesterinen and T.R. Wyatt. A novel technique for studying the z boson transverse momentum distribution at hadron colliders. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602(2):432 – 437, 2009.
[62] Lorenzo Viliani. CMS Tracker Performance and Readiness for LHC Run II. Technical Report CMS-CR-2015-102, CERN, Geneva, Jun 2015.
[63] W. Erdmann. Offline primary vertex reconstruction with deterministic annealing clustering. CMS Internal note, 2011/014, 2011.
[64] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental test of parity conservation in beta decay. Phys. Rev., 105:1413–1415, Feb 1957.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明