博碩士論文 107222020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.134.104.173
姓名 陳彥綸(Yen-Lun Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 碳化矽塊材之螢光光譜
(Photoluminescence Spectra of Bulk SiC)
相關論文
★ 矽基板上鍺薄膜的拉曼光譜研究★ 不同應力下之石墨烯電特性研究
★ AlGaN/GaN高電子遷移率電晶體異質結構的光學性質與其缺陷討論★ 氧化鎘鋅與氧化鎂鋅之光學性質分析
★ 氧化鋅薄膜與奈米柱的螢光光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 本論文使用拉曼光譜(Raman spectra)與光激發螢光光譜(Photoluminescence spectra)來研究碳化矽樣品的多型體結構(polytype structure)種類與螢光特性。
由於不同多型體結構的碳化矽樣品在不同的波數位置上會出現不同的聲子模態訊號,因此可藉由拉曼光譜來辨別碳化矽樣品的多型體結構種類。由實驗結果判斷,我們所使用的樣品屬於4H-SiC和6H-SiC。
利用光激發螢光光譜,可以得知碳化矽樣品中存在許多的固有缺陷,並在低溫時測得由固有缺陷產生的多條尖銳零聲子線(zero-phonon lines)訊號。由變溫光激發螢光光譜可知,螢光訊號來自多個不同的缺陷發光,且在不同溫度時有其他的缺陷亦參與發光,使擬合的峰值位置有些微的不同。將擬合後的波峰積分強度對溫度變化作圖,並利用Arrhenius的關係式對圖形做擬合可得到碳化矽樣品的活化能大小。
最後對碳化矽樣品微波加熱八次後再進行一次變溫光激發螢光光譜測量和活化能的擬合,比較微波加熱前後變溫螢光光譜的差異並討論微波加熱對樣品的影響。
摘要(英) In this work, we use Raman spectra and Photoluminescence spectra to study the polytype structure sorts and luminescence properties of silicon carbide samples, respectively.
Silicon carbide samples will show different phonon mode signals at different wave number positions of Raman spectra due to the various polytype structures, therefore, the polytype structure sorts of silicon carbide samples can be distinguished by Raman spectra. From the experimental results, we can identify that the samples we used are 4H-SiC and 6H-SiC.
By measuring PL spectra, we can know that there are many intrinsic defects in these silicon carbide samples, and we also measured several sharp signals of zero-phonon lines at low temperature, which are caused by the intrinsic defects. From temperature dependent PL spectra, the fluorescent signals come from multiple different defects. Besides, there are other defects also participate in the light emission at different temperature, so that the peak positions of fitting are slightly different. Plot the peak integrated intensity after fitting against the temperature, and fit the graph with Arrhenius equation, then we can get the activation energy of the silicon carbide samples.
At last, we measure the temperature dependent PL spectra and fit the graph to get the activation energy again after doing microwave heating on silicon carbide samples for eight times. Then we compare the difference of temperature dependent PL spectra before and after microwave heating and discuss the influence of microwave heating on samples.
關鍵字(中) ★ 碳化矽
★ 光激螢光
★ 螢光光譜
★ 拉曼光譜
關鍵字(英) ★ SiC
★ PL spectrum
★ Raman spectrum
論文目次 摘要..............................................i
Abstract.........................................ii
致謝............................................iii
目錄..............................................v
圖目錄..........................................vii
表目錄............................................x
第一章 簡介......................................1
第二章 基本原理..................................4
2-1 碳化矽的基本性質............................4
2-1.1 碳化矽多型體結構概述......................6
2-1.2 碳化矽的缺陷類型.........................11
2-1.3 零聲子線.................................14
2-2 光激發螢光原理.............................16
2-3 活化能.....................................18
2-4 拉曼光譜原理...............................19
第三章 實驗樣品與實驗裝置.......................23
3-1 實驗樣品...................................23
3-2 光激發螢光光譜實驗.........................25
3-3 拉曼光譜實驗...............................30
第四章 實驗結果與討論...........................32
4-1 碳化矽室溫拉曼光譜.........................32
4-2 碳化矽光激螢光光譜.........................36
4-3 碳化矽變溫光激螢光光譜.....................46
4-4 碳化矽經微波加熱後變溫光激螢光光譜.........56
第五章 結論.....................................69
參考文獻.........................................72
參考文獻 [1] J. A. Lely, Berichte der Deutschen Keramischen Gesellschaft e.V., 32, 229 (1955).
[2] Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth, 43, 209 (1978).
[3] Jiyang Fan, Paul K. Chu 《Silicon Carbide Nanostructures: Fabrication, Structure, and Properties》ISBN: 978-3-319-08725-2
[4] Takuma Kobayashi et al.,“Native point defects and carbon clusters in 4H-SiC: A hybrid functional study”,J. Appl. Phys. 125, 125701 (2019)
[5] Dalibor T, Pensl G, Matsunami H, Kimoto T, Choyke WJ, Schöner A, Nordell N “Deep defect centers in silicon carbide monitored with deep level transient spectroscopy.” Phys Stat Sol (a) 162:199–225 (1997)
[6] R.S. Ramsdell [ Am. Mineral. (USA) vol.32 (1947) p.64-82 ]
[7] MAGNUS WILLANDER, MILAN FRIESEL, QAMAR-UL WAHAB, BORIS
STRAUMAL “Silicon carbide and diamond for high temperature device applications” JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 17(2006)1–25
[8] H. Jagodzinski [ Acta Crystallogr. (Denmark) vol.2 (1949) ]
[9] W.H.Backes, P.A.Bobbert, W.van Haeringen “Energy-band
structure of SiC polytypes by interface matching of
electronic wave functions.” Phys Rev B VOLUME 49, NUMBER 11 (1994)
[10] Hiroyuki MATSUNAMI, “Technological Breakthroughs in Growth Control of Silicon Carbide for High Power Electronic Devices” Jpn. J. Appl. Phys., Vol. 43, No. 10 (2004)
[11] Pavel G. Baranov, Anna P. Bundakova, and Alexandra A. Soltamova “Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy”PHYSICAL REVIEW B 83, 125203 (2011)
[12] E. So ̈rman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janze ́n “Silicon vacancy related defect in 4H and 6H SiC” Phys. Rev. B 61, 2613 (2000)
[13] T. Egilsson, A. Henry, I. G. Ivanov, J. L. Lindström, E. Janze ́n “Photoluminescence of electron-irradiated 4H-SiC” PHYSICAL REVIEW B VOLUME 59, NUMBER 12 (1999)
[14] T. A. G. Eberlein, C. J. Fall, and R. Jones et al., “Alphabet luminescence lines in 4H-SiC” PHYSICAL REVIEW B, VOLUME 65, 184108 (2002)
[15] M. Leroux, N. Grandjean et al.,“ Temperature quenching of photoluminescence intensities in undoped and doped GaN” J. Appl. Phys., Vol.86, No.7, (1999)
[16] Ju ̈ri Krustok et al.,“Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy?” J. Appl. Phys., Vol.81, No.3, (1997)
[17] J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson “Spatial characterization of doped SiC wafers by Raman spectroscopy” Journal of Applied Physics 84, 6268 (1998)
[18] S. Nakashima and H. Harima “Raman Investigation of SiC Polytypes” phys. stat. sol. (a) 162, 39 (1997)
[19] S Sorieul, J-M Costantini, L Gosmain, L Thome´ and J-J Grob “Raman spectroscopy study of heavy-ion-irradiated α-SiC” J. Phys.: Condens. Matter 18 (2006) 5235–5251
[20] S. G. Sridhara et al., “Absorption coefficient of 4H silicon carbide from 3900 to 3250 Å” Journal of Applied Physics 84, 2963 (1998)
[21] H. R. Philipp and E. A. Taft, in Silicon Carbide-A High Temperature Semiconductor, edited by J. R. O’Connor and J. Smiltens (Pergamon, Oxford, 1960), p. 366.
[22] 黃烱焜,“氧化鎘鋅與氧化鎂鋅之光學性質分析”,國立中央大學 物理所 碩士論文(2017)
指導教授 鄭劭家(Chao-Chia Cheng) 審核日期 2022-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明