博碩士論文 107222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.144.28.50
姓名 蕭力捷(Li-Chieh Hsiao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice)
相關論文
★ A Complete Quantification of Photon-induced Desorption Processes of CO2 Ice★ X射線與電子能量作用下星際冰晶的化學衍化
★ VUV and EUV irradiation of CH4+NH3 ice mixtures★ Temperature dependent photodesorption of CO ices
★ Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations★ Diffusion in Realistic-Like Double-Layered Ices
★ 能量源照射星際冰晶之光脫附作用與光化學反應★ Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation
★ 不同電子能量作用下對N2O冰晶的衍化影響★ 一氧化二氮冰晶在真空紫外光照射下其生成溫度對耗散截面的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光致脫附使冷凝的固態分子變為氣相,是造成分子雲中氣態分子異常豐富的原因之一。在實驗室中通過星際能量作用系統模擬可形成分子冰晶的天文環境,並以國家同步輻射研究中心天光光束線所提供之單色真空紫外線照射。本次實驗主要探討一氧化碳冰晶之光致脫附,結果證實分子冰晶脫附效益與分子受光激發之電子躍遷機率有關。且通過在一氧化碳冰晶上覆蓋不吸收真空紫外線的分子(如氮氣,氬氣或氪氣)生成雙層冰晶並以真空紫外線照射,結果表明受光激發之分子將部分能量給予鄰近分子並使其脫附為使光致脫附主要機制。同時在本研究中提出了一個模型,該模型可以良好的描述本次實驗數據,並可得知真空紫外線導致之脫附受分子冰晶的表面分子的組成、分子間結合能和冰晶之熱擴散係數的影響。
摘要(英) The photon-stimulated desorption, or the photodesorption, is a pathway to make condensed molecules introduce into gas phase. It is a candidate to solve the abnormal abundance of gaseous molecules in the cold, dense cloud. The astronomical environment to form the molecular ice is simulated by Interstellar Energetic-Process System in laboratory. The irradiation of monochromatic vacuum ultraviolet (VUV) from National Synchrotron Radiation Research Center on CO, carbon monoxide, ice confirms the process of Desorption Induced by Electronic Transition. Through covering VUV-inactive molecules, such as N2, Ar or Kr, on 13CO and irradiate the designed two-layer ices, the results shows that indirect DIET is the main process to make molecules desorb. Meanwhile, a model is proposed in this study that can fit our experimental data, and the results indicate that VUV-photodesorption is affected by surface composition, binding energy and thermal diffusivity of the molecular ices.
關鍵字(中) ★ 一氧化碳
★ 光致脫附
★ 分子冰晶
★ 緻密雲
★ DIET
關鍵字(英) ★ CO
★ photodesorption
★ molecular ice
★ dense cloud
★ DIET
論文目次 Contents
page
摘要 v
Abstract vii
Acknowledgement ix
Contents xi
1 Introduction 1
2 Experimental Set-up, Method 3
2.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 The Experimental Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Detection Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 The VUV Source from NSRRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 QMS Quantitative Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Definition of Photodesorption Rate and Yield . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Quantize Condensed Molecules by FTIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Quantize Condensed Molecules by QMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Deposition of the Ices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Monochromatic Light Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Temperature Programmed Desorption (TPD) . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Results and discussion 11
3.1 Desorption Yield and VUV Absorbance of the Ices . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 The Relative Desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Factors Influencing Relative Desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Direct and Indirect DIET in Two-Layer Ices . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The Model for the Relative Desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Relative Desorbing Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
xiCONTENTS
3.2.2 Coverage Ratio on the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Relative Resorption Energy at the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Comparison between fitting parameter and direct measurement . . . . . . . . . . . . 19
4 Conclusions 21
Bibliography 23
參考文獻 [1] M. Bertin, E. C. Fayolle, C. Romanzin, K. I. Öberg, X. Michaut, A. Moudens, L. Philippe, P.
Jeseck, H. Linnartz, and J. H. Fillion, “UV photodesorption of interstellar CO ice analogues:
From subsurface excitation to surface desorption,” Physical Chemistry Chemical Physics,
vol. 14, no. 28, pp. 9929–9935, 2012, issn: 14639076. doi: 10.1039/c2cp41177f.
[2] M. Bertin, E. C. Fayolle, C. Romanzin, H. A. Poderoso, X. Michaut, L. Philippe, P. Jeseck,
K. I. Öberg, H. Linnartz, and J. H. Fillion, “Indirect ultraviolet photodesorption from
CO:N2 binary ICES - An effcient grain-gas process,” Astrophysical Journal, vol. 779, no. 2,
2013, issn: 15384357. doi: 10.1088/0004-637X/779/2/120.
[3] E. C. Fayolle, M. Bertin, C. Romanzin, X. Michaut, K. I. Öberg, H. Linnartz, and J. H.
Fillion, “CO ice photodesorption: A wavelength-dependent study,” Astrophysical Journal
Letters, vol. 739, no. 2, pp. 1–5, 2011, issn: 20418205. doi: 10.1088/2041-8205/739/2/L36.
[4] M. C. Van Hemert, J. Takahashi, and E. F. Van Dishoeck, “Molecular Dynamics Study
of the Photodesorption of CO Ice,” Journal of Physical Chemistry A, vol. 119, no. 24,
pp. 6354–6369, 2015, issn: 15205215. doi: 10.1021/acs.jpca.5b02611.
[5] P. Avouris, “Fundamental Mechanisms Of Desorption And Fragmentation Induced By
Electronic Transitions At Surfaces,” Annual Review of Physical Chemistry, vol. 40, no. 1,
pp. 173–206, 1989, issn: 0066426X. doi: 10.1146/annurev.physchem.40.1.173.
[6] D. Rapp and P. Englander-Golden, “Total cross sections for lonization and attachment in
gases by electron impact. I. Positive ionization,” The Journal of Chemical Physics, vol. 43,
no. 5, pp. 1464–1479, 1965, issn: 00219606. doi: 10.1063/1.1696957.
[7] O. Kerkhof, W. A. Schutte, and P. Ehrenfreund, “The infrared band strengths of CH3OH,
NH3 and CH4 in laboratory simulations of astrophysical ice mixtures,” Astronomy and
Astrophysics, vol. 346, no. 3, pp. 990–994, 1999, issn: 00046361.
[8] T. A. Scott, “Solid and liquid nitrogen,” Physics Reports, vol. 27, no. 3, pp. 89–157, 1976,
issn: 03701573. doi: 10.1016/0370-1573(76)90032-6.
[9] S. State, “The Sobd State of Rare Gases,” vol. I, no. 1957, 1963.
指導教授 陳俞融(Yu-Jung Chen) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明