博碩士論文 107223015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.141.198.66
姓名 賴沅鋐(Yuan-Hung Lai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以Fe3O4修飾管狀有序中孔洞碳材CMK-9及Cu摻雜SnO2中孔洞碳氮材於高能鋰離子電池負極材料之應用
(Fe3O4 nanoparticles confined in mesoporous carbon CMK-9 and Cu doped SnO2 in mesoporous carbonitride MUFC as efficient nanocomposite anode for lithium ion batteries with improved electrochemical performance)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分為兩部分,第一部分為過渡金屬氧化物Fe3O4修飾於管狀有序中孔洞碳材CMK-9,以含浸法合成出Fe3O4@CMK-9奈米複合材料,並應用於鋰離子電極的負極。Fe3O4的理論電容高達925 mAh/g,其自然資源含量豐富且成本低,但具有過渡金屬氧化物充放電後體積變化大的缺點,利用中孔洞碳材CMK-9的有序孔道能有效抑制其體積膨脹及提升導電度,在電流密度100 mA/g下進行電性測試,經過50圈循環後,能得到高達1117 mAh/g的優異電容量表現。
第二部分為通過奈米模鑄法(Nanocasting)合成出中孔洞碳氮材料(MUFC),利用摻雜Cu的過渡金屬氧化物SnO2中孔洞碳氮材,以含浸法合成出Cu摻雜SnO2@MUFC奈米複合材料,藉由MUFC上不僅可以利用有缺陷的CN位點和氮間隙,可以很均勻分散二氧化錫金屬顆粒,且由於其具有鹼性的含氮位點可有效促進鋰離子的傳遞,並摻入Cu作為晶格膨脹的緩衝劑,必免顆粒聚集的情況發生,藉此提升其電性的表現,在電流密度100 mA/g下進行電性測試,經過50圈循環後,能得到高達1064 mAh/g的優異電容量表現。
摘要(英) Transition metal oxides as anode materials in lithium ion batteries have attracted immense attention in recent years due to their high theoretical capacities as compared with commercial graphite. However, the huge volume change during the charge-discharge process leads to unstable electrochemical performances.
In first part, we design a tubular nanocomposite of Fe3O4@CMK-9 to solve the problem. A three-dimensional (3-D) hollow-type ordered mesoporous carbon (CMK-9) could not only provide enough space during the Li+ insertion-extraction process, but also increase the electrical conductivity. Ordered mesoporous carbon CMK-9 has nanoscale uniform mesopore, large surface area and good conducting network for both Li ions and electrons. Fe3O4 has high theoretical capacity (925 mAh/g), natural abundance and low in cost. Fe3O4@CMK-9 display a high reversible capacity of 1117 mAh/g after 50 cycles at a current density of 100 mAh/g with an outstanding rate performance. The Fe3O4@CMK-9 nanocomposite is expected to have high specific capacity and good cycling performance.
In second part, we synthesize nitrogen–rich carbon materials with hierarchical porosity were obtained by pyrolyzing melamine-urea- formaldehyde mesoporous carbonitride materials (MUFC). The MUFC nanocomposite can not only use the defective CN sites and nitrogen gaps on the MUFC, but also can disperse tin oxide metal particles very uniformly. And then MUFC has alkaline nitrogen sites, it can effectively promote the transfer of lithium ions. Copper doping SnO2 could avoid the drastic volume change and aggregation of nanoparticles. Cu-doped SnO2@MUFC display a high reversible capacity of 1064 mAh/g after 50 cycles at a current density of 100 mAh/g with an outstanding rate performance.
關鍵字(中) ★ 中孔洞
★ 鋰離子電池
★ 四氧化三鐵
★ 中孔洞碳氮材
★ 二氧化錫
★ 銅摻雜二氧化錫
關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
謝誌 iv
目錄 vi
圖目錄 x
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 二次電池 2
1-3 鋰離子電池 4
1-4 研究目的 7
第二章 文獻回顧 9
2-1 有序中孔洞碳材 9
2-1-1 奈米模鑄法( Nanocasting )合成機制 12
2-1-2 奈米模鑄法合成中孔洞碳材之發展 14
2-1-3奈米模鑄法合成有序中孔洞碳氮材之發展 20
2-2 負極材料 27
2-2-1 碳材 27
2-2-2 非碳材 31
2-2-3 碳材-非碳材複合材料 32
2-2-3-1 四氧化三鐵修飾碳材的負極材料 34
2-2-3-2 銅摻雜二氧化錫修飾碳氮材的負極材料 36
第三章 實驗方法 38
3-1 藥品 38
3-2 奈米模鑄法合成三維孔道結構 (Ia3d)中孔洞碳材 41
3-2-1 三維六角柱狀p6mm中孔洞矽材KIT-6合成 41
3-2-2 三維立方Ia3d中孔洞管狀碳材CMK-9合成 41
3-2-3 含浸法合成Fe3O4@CMK-9負極材料 42
3-3 奈米模鑄法合成中孔洞碳氮材MUFC 42
3-3-1 含浸法合成SnO2@MUFC負極複合材料 43
3-3-2 含浸法合成Cu摻雜SnO2@MUFC負極合材料 44
3-4 材料電化學測試 45
3-4-1 負極極片製作 45
3-4-2 硬幣型電池組裝 45
3-4-3 電池性能測試方法 47
3-4-3-1 定(變)電流充放電循環測試 47
3-4-3-2 循環伏安法(CV) 47
3-4-3-3 電化學阻抗分析(EIS) 47
3-5 實驗鑑定儀器 48
3-6 鑑定儀器之原理 49
3-6-1 同步輻射光束線 49
3-6-2 X射線粉末繞射(XRD) 52
3-6-3 氮氣等溫吸脫附曲線、表面積與孔洞性質鑑定 53
3-6-4 熱重分析儀(TGA) 57
3-6-5 穿透式電子顯微鏡(TEM) 58
3-6-6 掃描式電子顯微鏡(SEM) 60
3-6-7 交流阻抗分析儀(AC-Impedance) 61
3-6-8 循環伏安法(Cyclic Voltammetry, CV) 62
第四章 結果與討論 63
4-1 含浸法合成Fe3O4@CMK-9負極材料 63
4-1-1 小角度X光繞射圖譜分析 63
4-1-2 大角度X光繞射圖譜分析 65
4-1-3 氮氣吸脫附結果分析 67
4-1-4 熱重分析 70
4-1-5 ICP-MS結果分析 72
4-1-6 SEM結果分析 73
4-1-7 TEM結果分析 75
4-1-8 XPS結果分析 82
4-1-9 拉曼光譜分析 84
4-1-10 電性分析 86
4-1-11 循環伏安法分析 91
4-1-12 交流阻抗分析 93
4-1-13 充放電後的SEM結果分析 98
4-2 含浸法合成Cu摻雜SnO2@MUFC負極複合材料 100
4-2-1小角度X光繞射圖譜分析(SAXRD) 100
4-2-2 大角度X光繞射圖譜分析 102
4-2-3 氮氣吸脫附結果分析 104
4-2-4 熱重分析 108
4-2-5 ICP-MS及EA元素分析結果 110
4-2-6 SEM結果分析 112
4-2-7 TEM結果分析 115
4-2-8 XPS結果分析 125
4-2-9 拉曼光譜分析 127
4-2-10 電性分析 129
4-2-11 循環伏安法分析 137
4-2-12 交流阻抗分析 140
4-2-13 充放電後的SEM結果分析 145
第五章 結論 147
參考文獻 149
參考文獻 1 https://batteryuniversity.com/learn/article/secondary_batteries.
2 Gopalakrishnan, R. et al. A comprehensive study on rechargeable energy storage technologies. Journal of Electrochemical Energy Conversion and Storage 13, 040801, (2016).
3 http://batteryuniversity.com.
4 Sui, Z., Meng, Q., Zhang, X., Ma, R. & Cao, B. Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 22, 8767-8771, (2012).
5 Wang, W. & Yuan, D. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific reports 4, 5711, (2014).
6 Fang, W., Zhang, N., Fan, L. & Sun, K. Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 238, 202-209, (2017).
7 Wan, L. et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology 27, 135102, (2016).
8 Lamond, T. G. & Marsh, H. The surface properties of carbon—III the process of activation of carbons. Carbon 1, 293-307, (1964).
9 Hu, Z., Srinivasan, M. P. & Ni, Y. Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 12, 62-65, (2000).
10 Tamon, H., Ishizaka, H., Yamamoto, T. & Suzuki, T. Preparation of mesoporous carbon by freeze drying. Carbon 37, 2049-2055, (1999).
11 Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 24, 3221-3227, (1989).
12 Marsh, H. & Rand, B. The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. Carbon 9, 63-77, (1971).
13 Tamai, H., Kakii, T., Hirota, Y., Kumamoto, T. & Yasuda, H. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chemistry of Materials 8, 454-462, (1996).
14 Oya, A., Yoshida, S., Alcaniz-Monge, J. & Linares-Solano, A. Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 33, 1085-1090, (1995).
15 Ozaki, J. et al. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35, 1031-1033, (1997).
16 Liang, C., Hong, K., Guiochon, G. A., Mays, J. W. & Dai, S. Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 43, 5785-5789, (2004).
17 Liang, C. & Dai, S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. Journal of the American Chemical Society 128, 5316-5317, (2006).
18 Knox, J. H., Kaur, B. & Millward, G. R. Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 352, 3-25, (1986).
19 Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography. Journal of Liquid Chromatography 6, 1-36, (1983).
20 Li, W.-C., Lu, A.-H., Weidenthaler, C. & Schüth, F. Hard-templating pathway to create mesoporous magnesium oxide. Chemistry of materials 16, 5676-5681, (2004).
21 Bonelli, B., Esposito, S. & Freyria, F. S. in Titanium Dioxide (IntechOpen, 2017).
22 Lu, A. H. & Schüth, F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Advanced Materials 18, 1793-1805, (2006).
23 Knox, J., Unger, K. & Mueller, H. Prospects for carbon as packing material in high-performance liquid chromatography. Journal of Liquid Chromatography 6, 1-36, (1983).
24 Ryoo, R., Joo, S. H., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Advanced Materials 13, 677-681, (2001).
25 Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 103, 7743-7746, (1999).
26 Hoffmann, F., Cornelius, M., Morell, J. & Fröba, M. Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 45, 3216-3251, (2006).
27 Solovyov, L. A., Zaikovskii, V. I., Shmakov, A. N., Belousov, O. V. & Ryoo, R. Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy. The Journal of Physical Chemistry B 106, 12198-12202, (2002).
28 Kleitz, F., Choi, S. H. & Ryoo, R. Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2136-2137, (2003).
29 Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169, (2001).
30 Zhang, F. et al. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chemistry of materials 18, 5279-5288, (2006).
31 Qiu, Y. & Gao, L. Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chemical Communications, 2378-2379, (2003).
32 Guo, Q. et al. A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications 132, 369-374, (2004).
33 Kaatz, F. H., Dai, J. Y., Markworth, P. R., Buchholz, D. B. & Chang, R. P. H. Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE). Journal of Crystal Growth 247, 509-515, (2003).
34 Zimmerman, J. L., Williams, R., Khabashesku, V. N. & Margrave, J. L. Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters 1, 731-734, (2001).
35 Zhao, D. et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279, 548, (1998).
36 Vinu, A. et al. Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials 17, 1648-1652, (2005).
37 Zhong, L., Anand, C., Lakhi, K. S., Lawrence, G. & Vinu, A. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports 5, 12901, (2015).
38 Vinu, A. et al. Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials 19, 4367-4372, (2007).
39 Lakhi, K. S. et al. Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 243, 209-217, (2015).
40 Jin, X. et al. Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metal-Free Basic Catalyst. Angewandte Chemie International Edition 48, 7884-7887, (2009).
41 Talapaneni, S. N. et al. Synthesis of Nitrogen-Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem 5, 700-708, (2012).
42 Mane, G. P. et al. Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A 1, 2913-2920, (2013).
43 Talapaneni, S. N. et al. Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry 22, 9831-9840, (2012).
44 Ma, F. et al. A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry 22, 13464-13468, (2012).
45 Chen, X. Y. et al. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources 230, 50-58, (2013).
46 Sun, G. et al. Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochimica Acta 194, 168-178, (2016).
47 Zhou, H., Zhu, S., Hibino, M., Honma, I. & Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK‐3) with high reversible specific energy capacity and good cycling performance. Advanced Materials 15, 2107-2111, (2003).
48 Cui, D. et al. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. Journal of Power Sources 362, 20-26, (2017).
49 Wang, M.-S. et al. One dimensional and coaxial polyaniline@ tin dioxide@ multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chemical Engineering Journal 334, 162-171, (2018).
50 Qiu, H. et al. Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. Journal of Porous Materials 24, 551-557, (2017).
51 Chen, L. & Wang, Y. Z. A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies 21, 1-26, (2010).
52 Reina, G. et al. Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews 46, 4400-4416, (2017).
53 De las Casas, C. & Li, W. A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources 208, 74-85, (2012).
54 Lee, C.-S. & Hyun, Y. in Nanofiber Research-Reaching New Heights (IntechOpen, 2016).
55 Zhou, X., Wan, L.-J. & Guo, Y.-G. Facile synthesis of MoS2@ CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 4, 5868-5871, (2012).
56 Saikia, D. et al. A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. Rsc Advances 5, 42922-42930, (2015).
57 Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano today 7, 414-429, (2012).
58 Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature communications 6, 7393, (2015).
59 Ren, M. et al. Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochimica Acta 194, 219-227, (2016).
60 Zhu, X., Zhu, Y., Murali, S., Stoller, M. D. & Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS nano 5, 3333-3338, (2011).
61 Li, Z. et al. Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry 22, 16640-16648, (2012).
62 Han, F., Li, W.-C., Li, M.-R. & Lu, A.-H. Fabrication of superior-performance SnO2@ C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry 22, 9645-9651, (2012).
63 Cheng, M.-Y. & Hwang, B.-J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. Journal of Power Sources 195, 4977-4983, (2010).
64 Zhao, J. et al. Facile preparation of one-dimensional wrapping structure: graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery. ACS Appl Mater Interfaces 6, 9890-9896, (2014).
65 Zhang, S. et al. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4–Graphene Composite Anode and Activated Carbon Cathode. ACS Applied Materials & Interfaces 9, 17136-17144, (2017).
66 Zhao, Y. et al. Fully Reversible Conversion between SnO2 and Sn in SWNTs@SnO2@PPy Coaxial Nanocable As High Performance Anode Material for Lithium Ion Batteries. The Journal of Physical Chemistry C 116, 18612-18617, (2012).
67 Lin, J. et al. Graphene Nanoribbon and Nanostructured SnO2
Composite Anodes for Lithium Ion Batteries. Acs Nano 7,
6001-6006, (2013).
68 Kim, H.-D. et al. Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporous carbon catalysts: Effect of structure and framework-configuration. international journal of hydrogen energy 37, 12187-12197, (2012).
69 Guo, C. et al. Facile Fabrication of Honeycomb-like Carbon Network-Encapsulated Fe/Fe3C/Fe3O4 with Enhanced Li-Storage Performance. ACS Appl Mater Interfaces 10, 35994-36001, (2018).
70 Qiao, H. et al. Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites. Applied Surface Science 400, 492-497, (2017).
71 Ni, D. et al. Bismuth oxyfluoride@ CMK-3 nanocomposite as cathode for lithium ion batteries. Journal of Power Sources 374, 166-174, (2018).
72 Srinivasan, N., Mitra, S. & Bandyopadhyaya, R. Improved electrochemical performance of SnO2–mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Physical Chemistry Chemical Physics 16, 6630-6640, (2014).
73 Cao, Z. & Ma, X. Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. Journal of Alloys and Compounds 815, (2020).
74 Yang, Y., Li, J., Chen, D. & Zhao, J. A Facile Electrophoretic Deposition Route to the Fe3O4/CNTs/rGO Composite Electrode as a Binder-Free Anode for Lithium Ion Battery. ACS Appl Mater Interfaces 8, 26730-26739, (2016).
75 Zhao, X., Xia, D. & Zheng, K. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries. ACS Appl Mater Interfaces 4, 1350-1356, (2012).
76 Chen, D., Ji, G., Ma, Y., Lee, J. Y. & Lu, J. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl Mater Interfaces 3, 3078-3083, (2011).
77 Shi, Z., Zhang, Q., Zhao, L., Wang, H. & Zhou, W. Inner-Stress-Optimized High-Density Fe3O4 Dots Embedded in Graphitic Carbon Layers with Enhanced Lithium Storage. ACS Appl Mater Interfaces 12, 15043-15052, (2020).
78 He, Z. et al. MOF-Derived Hierarchical MnO-Doped Fe3O4@C Composite Nanospheres with Enhanced Lithium Storage. ACS Appl Mater Interfaces 10, 10974-10985, (2018).
79 Li, D. et al. Carbon-wrapped Fe3O4 nanoparticle films grown on nickel foam as binder-free anodes for high-rate and long-life lithium storage. ACS Appl Mater Interfaces 6, 648-654, (2014).
80 Zhao, R. et al. Heterogeneous Double-Shelled Constructed Fe3O4 Yolk-Shell Magnetite Nanoboxes with Superior Lithium Storage Performances. ACS Appl Mater Interfaces 9, 24662-24670, (2017).
81 Hassan, M. F., Rahman, M. M., Guo, Z., Chen, Z. & Liu, H. SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry 20, 9707-9712, (2010).
82 Jiang, Y. et al. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage. ACS Appl Mater Interfaces 7, 26367-26373, (2015).
83 Ye, X. et al. One-step synthesis of Ni-doped SnO2 nanospheres with enhanced lithium ion storage performance. New Journal of Chemistry 39, 130-135, (2015).
84 Weinberger, C. et al. Bimodal Mesoporous CMK-5 Carbon: Selective Pore Filling with Sulfur and SnO2 for Lithium Battery Electrodes. ACS Applied Nano Materials 1, 455-462, (2017).
85 Qiao, H. et al. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties. ACS Appl Mater Interfaces 3, 3704-3708, (2011).
86 Li, F. et al. Controlled Prelithiation of SnO2/C Nanocomposite Anodes for Building Full Lithium-Ion Batteries. ACS Appl Mater Interfaces 12, 19423-19430, (2020).
87 Pan, D. et al. Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO2 Nanoparticles. ACS Appl Mater Interfaces 9, 9747-9755, (2017).
88 Li, Z. F. et al. Facile Preparation of Graphene/SnO2 Xerogel Hybrids as the Anode Material in Li-Ion Batteries. ACS Appl Mater Interfaces 7, 27087-27095, (2015).
89 Lin, J. et al. Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries. Acs Nano 7, 6001-6006, (2013).
90 Xia, G. et al. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl Mater Interfaces 5, 8607-8614, (2013).
91 Kong, Y. et al. Nanosized Amorphous SnO2 Particles Anchored in the Wheat Straw Carbon Substrate as the Stabilized Anode Material of Lithium-Ion Batteries. ACS Applied Energy Materials 1, 7065-7075, (2018).
92 Li, Y. et al. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. ACS Appl Mater Interfaces 8, 197-207, (2016).
93 Wei, H., Xia, Z. & Xia, D. One Step Synthesis of Uniform SnO2 Electrode by UV Curing Technology toward Enhanced Lithium-Ion Storage. ACS Appl Mater Interfaces 9, 7169-7176, (2017).
94 Deng, J. W. et al. Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. Acs Nano 7, 6948-6954, (2013).
95 Abe, J., Takahashi, K., Kawase, K., Kobayashi, Y. & Shiratori, S. Self-Standing Carbon Nanofiber and SnO2 Nanorod Composite as a High-Capacity and High-Rate-Capability Anode for Lithium-Ion Batteries. ACS Applied Nano Materials 1, 2982-2989, (2018).
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明