博碩士論文 107223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.15.141.250
姓名 謝宜君(Yi-Chun Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計與合成苯並咪唑衍生物及環狀化合物應用於鈣鈦礦太陽能電池之電洞傳輸材料
(Design and Synthesis of Benzimidazole Derivatives and a Macrocyclic Compound as Hole Transporting Materials for Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本文第一部份為延續先前實驗室學長之化合物,同樣以Benzimidazole為核心衍生物,將拉電子基團改為大小不同之推電子基團,比較推拉電子效應之差異性並應用於反式鈣鈦礦太陽能電池。由最後送測兩個分子之光物理性質及元件效率數據可知,推電子基團之YJS003在熱穩定性、電洞遷移率、光電轉換效率等數據表現皆優於拉電子基團之YJS001,因此,在此系列中以推電子基之表現較佳,目前YJS003最高光電轉換效率為15.76%,優於YJS001之11.30%。
  第二部分為研究合成Macrocyclic compound,有機環狀小分子應用於電洞傳輸材料無論是在太陽能電池亦或是有機發光二極體數量皆稀少,加上由先前環狀化合物之文獻相關報導指出,具D-A性質之環狀分子有利於孔柱狀之排列堆積,綜合以上因素,研究與設計一環狀分子,以TPA為Donor,Nitrobenzene group為Acceptor之D-A-D-A雜環化合物,分子合成尚在研究進行中。
摘要(英) The first part of this article continues the previous laboratory senior’s work. It also uses benzimidazole as the core, changing the electron-acceptor to the electron-donor group, comparing the difference of the electron-donor-acceptor effect and applying it to inverted perovskite solar cell. From the measurement of the photophysical properties and device efficiency data of YJS001 and YJS003, it can be seen that the YJS003 of the electron-donor group is better than the YJS001 of the electron-acceptor group in thermal stability, hole mobility, photoelectric conversion efficiency, etc. Therefore, in this YJS series, the performance of the electron-donor based is much better. At present, the highest power conversion efficiency of YJS003 is 15.76%, which is better than 11.30% of YJS001.
  The second part is to design and synthesis macrocyclic compounds. Organic macrocyclic molecules are rarely used in hole transporting materials, whether in solar cells or organic light-emitting diodes. According to literature reports, macrocyclic molecules with D-A type are conducive to the arrangement of pore columns. Based on the above factors, research and design a cyclic molecule that use TPA as donor and nitrobenzene group as acceptor to synthesis D-A-D-A heterocyclic compound. Molecular synthesis is still in progress.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸材料
關鍵字(英) ★ Perovskite solar cell
★ hole transporting materials
論文目次 目錄
摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 序論 1
1-1 前言 1
1-2 太陽能電池發展 2
1-3 鈣鈦礦太陽能電池 3
1-3-1 元件基本結構 4
1-3-2 太陽能電池工作原理 8
1-3-3 太陽能電池電壓與電流輸出特性 9
1-4 電洞傳輸材料之文獻回顧 11
二、 結構設計概念及動機 16
三、 合成與討論 21
3-1 合成策略 21
3-2 光物理性質探討 31
3-3 電化學性質分析 32
3-4 理論計算-密度泛函理論 (Density Functional Theory, DFT) 34
3-5 熱穩定性分析 38
3-6 元件效率測試 38
四、 結論與未來展望 42
五、 實驗合成與光譜數據 43
5-1 實驗藥品 43
5-2 實驗儀器 43
5-3 實驗合成步驟 46
參考文獻 69
附錄 73
參考文獻 1. https://www.eia.gov/energyexplained/us-energy-facts/.
2. Li, G.-R.; Gao, X.-P., Low-Cost Counter-Electrode Materials for Dye-Sensitized and Perovskite Solar Cells. Advanced Materials 2020, 32 (3).
3. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
4. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591.
5. Yu, W.; Zhang, J.; Tu, D.; Yang, Q.; Wang, X.; Liu, X.; Cheng, F.; Qiao, Y.; Li, G.; Guo, X.; Li, C., A Spirobixanthene-Based Dendrimeric Hole-Transporting Material for Perovskite Solar Cells. Sol. RRL 2020, 4 (1), 1900367.
6. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
7. Said, A. A.; Xie, J.; Zhang, Q., Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. 2019, 15 (27), 1900854.
8. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 2013, 13 (4), 1764-1769.
9. Huang, Y.; Li, L.; Liu, Z.; Jiao, H.; He, Y.; Wang, X.; Zhu, R.; Wang, D.; Sun, J.; Chen, Q.; Zhou, H., The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals. Journal of Materials Chemistry A 2017, 5 (18), 8537-8544.
10. Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.; Friend, R. H.; Gong, Q.; Snaith, H. J.; Zhu, R., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. 2018, 360 (6396), 1442-1446.
11. Nasti, G.; Abate, A., Tin Halide Perovskite (ASnX3) Solar Cells: A Comprehensive Guide toward the Highest Power Conversion Efficiency. 2020, 10 (13), 1902467.
12. Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F., Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (15), 11851-11858.
13. Gheno, A.; Vedraine, S.; Ratier, B.; Bouclé, J., π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells. 2016, 6 (1), 21.
14. Qi, B.; Wang, J., Open-circuit voltage in organic solar cells. Journal of Materials Chemistry 2012, 22 (46), 24315-24325.
15. Wright, M.; Uddin, A., Organic—inorganic hybrid solar cells: A comparative review. Solar Energy Materials and Solar Cells 2012, 107, 87-111.
16. Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C. W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H. Y.; Djurišić, A. B.; He, Z.; Guo, X., Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. Adv. Mater. 2019, 31 (35), 1902781.
17. Chen, H.; Fu, W.; Huang, C.; Zhang, Z.; Li, S.; Ding, F.; Shi, M.; Li, C.-Z.; Jen, A. K.-Y.; Chen, H., Molecular Engineered Hole-Extraction Materials to Enable Dopant-Free, Efficient p-i-n Perovskite Solar Cells. Adv. Energy Mater. 2017, 7 (18), 1700012.
18. Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Yuan, N.; Ding, J.; Li, Y., High Efficiency Planar p-i-n Perovskite Solar Cells Using Low-Cost Fluorene-Based Hole Transporting Material. Adv. Funct. Mater. 2019, 29 (22), 1900484.
19. Sun, Q.; Zhang, J.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Jia, X.; Yuan, N.; Ding, J.; Li, Y., High-efficiency planar p-i-n perovskite solar cells based on dopant-free dibenzo[b,d]furan-centred linear hole transporting material. Journal of Power Sources 2020, 449, 227488.
20. Huang, C.; Fu, W.; Li, C.-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K. Y.; Chen, H., Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (8), 2528-2531.
21. Rakstys, K.; Paek, S.; Gao, P.; Gratia, P.; Marszalek, T.; Grancini, G.; Cho, K. T.; Genevicius, K.; Jankauskas, V.; Pisula, W.; Nazeeruddin, M. K., Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A 2017, 5 (17), 7811-7815.
22. Lin, P.-H.; Lee, K.-M.; Ting, C.-C.; Liu, C.-Y., Spiro-tBuBED: a new derivative of a spirobifluorene-based hole-transporting material for efficient perovskite solar cells. J. Mater. Chem. A 2019, 7 (11), 5934-5937.
23. Cao, Y.; Li, Y.; Morrissey, T.; Lam, B.; Patrick, B. O.; Dvorak, D. J.; Xia, Z.; Kelly, T. L.; Berlinguette, C. P., Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell. Energy & Environmental Science 2019, 12 (12), 3502-3507.
24. Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G., Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells. Chem. Mater. 2019, 31 (15), 5431-5441.
25. Agarwala, P.; Kabra, D., A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. Journal of Materials Chemistry A 2017, 5 (4), 1348-1373.
26. Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; Zhao, Y., Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. Journal of the American Chemical Society 2018, 140 (31), 10016-10024.
27. Mohamed, M. G.; Lee, C.-C.; El-Mahdy, A. F. M.; Lüder, J.; Yu, M.-H.; Li, Z.; Zhu, Z.; Chueh, C.-C.; Kuo, S.-W., Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A 2020, 8 (22), 11448-11459.
28. Izumi, S.; Higginbotham, H. F.; Nyga, A.; Stachelek, P.; Tohnai, N.; Silva, P. d.; Data, P.; Takeda, Y.; Minakata, S., Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. Journal of the American Chemical Society 2020, 142 (3), 1482-1491.
29. Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H., Host–Host Interactions Control Self-assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co-assembled with anti-Electrostatic Bisulfate Dimers. 2018, 24 (39), 9841-9852.
30. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. 2011, 23 (20), 2367-2371.
31. Krishna, A.; Grimsdale, A. C., Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design? Journal of Materials Chemistry A 2017, 5 (32), 16446-16466.
32. Varughese, S., Non-covalent routes to tune the optical properties of molecular materials. Journal of Materials Chemistry C 2014, 2 (18), 3499-3516.
33. Kamata, K.; Suzuki, A.; Nakai, Y.; Nakazawa, H., Catalytic Hydrosilylation of Alkenes by Iron Complexes Containing Terpyridine Derivatives as Ancillary Ligands. Organometallics 2012, 31 (10), 3825-3828.
34. Meier, P.; Legraverant, S.; Müller, S.; Schaub, J., Synthesis of Formylphenylpyridinecarboxylic Acids Using Suzuki-Miyaura Coupling Reactions. Synthesis 2003, 2003 (04), 0551-0554.
35. Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M., High yielding synthesis of 2,2′-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes. Chemical Science 2016, 7 (5), 3154-3161.
36. Hayasaka, K.; Kamata, K.; Nakazawa, H., Highly Efficient Olefin Hydrosilylation Catalyzed by Iron Complexes with Iminobipyridine Ligand. 2016, 89 (3), 394-404.
37. Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R., New Pyridinium Ylide Dyes for Dye Sensitized Solar Cell Applications. Organic Letters 2016, 18 (14), 3386-3389.
38. Vazquez-Molina, D. A.; Pope, G. M.; Ezazi, A. A.; Mendoza-Cortes, J. L.; Harper, J. K.; Uribe-Romo, F. J., Framework vs. side-chain amphidynamic behaviour in oligo-(ethylene oxide) functionalised covalent-organic frameworks. Chemical Communications 2018, 54 (50), 6947-6950.
39. Lungerich, D.; Reger, D.; Hölzel, H.; Riedel, R.; Martin, M. M. J. C.; Hampel, F.; Jux, N., A Strategy towards the Multigram Synthesis of Uncommon Hexaarylbenzenes. 2016, 55 (18), 5602-5605.
40. Liu, Y.; Yang, L., Efficient Synthesis of Triarylamines Catalyzed by Copper(I) Diazabutadiene Complexes. 2015, 33 (4), 473-478.
41. Skórka, Ł.; Kurzep, P.; Wiosna-Sałyga, G.; Łuszczyńska, B.; Wielgus, I.; Wróbel, Z.; Ulański, J.; Kulszewicz-Bajer, I., New diarylaminophenyl derivatives of carbazole: Effect of substituent position on their redox, spectroscopic and electroluminescent properties. Synthetic Metals 2017, 228, 1-8.
42. Valero, S.; Collavini, S.; Völker, S. F.; Saliba, M.; Tress, W. R.; Zakeeruddin, S. M.; Grätzel, M.; Delgado, J. L., Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. Macromolecules 2019, 52 (6), 2243-2254.
指導教授 李文仁 審核日期 2020-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明