博碩士論文 107223020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.142.156.224
姓名 呂國毅(Kuo-Yi Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 蘭嶼大氣二氧化硫與臭氧濃度長期分析
相關論文
★ 台灣都會與工業區大氣甲烷變化及長期趨勢
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 蘭嶼位於台灣本島的東南方,是我國唯一有長期背景觀測二氧化硫(Sulfur dioxide, SO2)與臭氧(Ozone, O3)的離島,為中央氣象局建立,觀測時間自1995年3月至今。從全球趨勢而言,一次污染物SO2因為脫硫技術進步與各國嚴格規範排放量而使其排放量逐年下降,而二次污染物O3卻因其前趨物排放量的增加導致其濃度逐年上升。本研究分析蘭嶼氣象站(22.04°N, 121.55°E, 324 m a.s.l.)所觀測的SO2及O3長期趨勢,作為太平洋西岸背景大氣中一次與二次污染物變化特徵的代表,也和台灣趨勢比較其差異。
本研究顯示,蘭嶼SO2與O3年成長率皆為負成長,每年分別以0.06 ± 0.03 ppb與0.36 ± 0.07 ppb的速度下降,此外也發現2017年夏季O3濃度因強勁西南氣流而濃度低達9.5 ppb。利用HYSPLIT分析後推氣流軌跡(Backward trajectories)並將氣團分成五個來源(Clusters):中國、日本、太平洋、南海、當地,其中當地來源包含未分類之剩餘氣團,可見O3季節變化隨氣團來源而改變,北風、東北風所對應的濃度較高,南風、西南風的濃度則相對較低;然而,各來源的SO2濃度差距不大,季節變化較不顯著。隨著觀光發展,蘭嶼遊客量為當地SO2濃度短期變化的主因,位於測站西南方的發電廠於旅遊淡旺季時發電運轉程度的不同,可對應至西風與西南風之SO2濃度變化。從日夜變化亦可觀察到SO2在白天7-16時的濃度較高,較其他時間增加7.3 %;O3的日夜變化則無特定特徵。
本研究並分析兩種污染事件的類型,包括長程傳輸與台灣本島污染擴散事件。前者多伴隨著東北風將中國污染物往南輸送,例如台灣本島亦可監測到SO2污染物隨時間推移的變化;而後者通常發生在蘭嶼盛行西南風時將台灣本島污染往東輸送。搭配MERRA-2的資料,分析兩種事件類型的型態與影響範圍。
摘要(英) Lanyu is the only remote island of Taiwan with long-term measurements of background atmospheric SO2 and O3. The observation started from March, 1995 until present. Due to the improvement of modern sulfur removal process and strict emission regulations, the concentration of SO2 as a representative of the primary air pollutants has declined in recent years. However, the concentration of O3 as a secondary air pollutant was rising during the same period. This study investigates the long-term variations of SO2 and O3 at the Lanyu CWB station (22.04°N, 121.55°E, 324 m a.s.l.) to understand their characteristics in the western Pacific troposphere.
Our analysis shows that SO2 and O3 showed a decreasing trend with growth rates of -0.06 ± 0.03 ppb/yr and -0.36 ± 0.07 ppb/yr, respectively. In addition, we found a significant decline in O3 with a monthly concentration of 9.5 ppb because of strong southwesterlies in July, 2017. Based on the cluster analysis of HYSPLIT backward trajectories with 5 groups suggested: (1) China, (2) Japan, (3) The Pacific Ocean, (4) South China Sea, and (5) Local, the change of air mass origins was responding for the distinct seasonal O3 variations. Elevated O3 concentrations were mainly corresponding to north/northeast winds, whereas reduced O3 concentrations were mainly corresponding to south/southwest winds. However, no significant SO2 difference was found between the 5 groups. The influences of tourists were suggested responding for the seasonal and diurnal variations of SO2 as a result of emissions by the fire power plant lies to the southwest of the Lanyu station. For instance, more electricity demands during the peak period (April - September) and during the daytime (7:00 – 16:00 local time).
In this study, two typical pollution events were also investigated: (1) Long-range transport of Chinese air pollutants was mainly driven by northeastertlies. (2) Air pollution spread from Taiwan Main Island occurring with southwesterlies. MERRA-2 data were used for analyzing the characteristics of the two types of high concentration events.
關鍵字(中) ★ 蘭嶼
★ 二氧化硫
★ 臭氧
★ MERRA-2
★ AGAGE
關鍵字(英) ★ Lanyu
★ Sulfur dioxide
★ Ozone
論文目次 摘要............................................i
Abstract........................................ii
誌謝............................................iii
目錄............................................iv
圖目錄..........................................v
表目錄..........................................vii
第一章、前言.....................................1
1-1 二氧化硫主要來源與分布........................1
1-2 臭氧主要來源與分布............................5
1-3 研究動機.....................................7
第二章、研究內容與方法............................9
2-1 蘭嶼地理位置資訊與儀器簡介....................9
2-2 量測方法....................................11
2-3 AGAGE統計分析計算法........................14
2-4 氣流軌跡分析與HYSPLIT模式簡介................15
2-5 MERRA-2衛星同化再分析資料簡介...............17
第三章、結果與討論...............................20
3-1 長期趨勢....................................20
3-2 日夜變化與季節變化...........................28
3-3 HYSPLIT後推軌跡分析.........................33
3-4 其他可能影響趨勢之因素........................36
3-4-1 經濟活動...................................36
3-4-2 氣象因子...................................39
3-5 個案分析.....................................42
3-5-1 長程傳輸事件 --- 2015/01/22與2016/02/06.....43
3-5-2 台灣本島污染擴散 --- 2015/12/02.............51
第四章、結論......................................56
參考資料..........................................57
參考文獻 Akimoto, H. (2003), Global air quality and pollution, Science, 302 (5651), 1716-1719,
doi: 10.1126/science.1092666.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W. & Feichter, J. (2003), Stratosphere-
troposphere exchange: a review, and what we have learned from STACCATO, Journal of
Geophysical Research, 108 (D12), 8516, doi:10.1029/2002JD002490.
Carter, W. P. L., Pierce, J. A., Luo, L. & Malkina, I. L. (1995), Environmental chamber study
of maximum incremental reactivities of volatile organic compounds, Atmospheric
Environment, 29 (18), 2499-2511, doi:10.1016/1352-2310(95)00149-S.
Carvalho, D. (2019), An assessment of NASA’s GMAO MERRA-2 reanalysis surface winds, Journal of Climate, 32 (23), 8261-8281, doi:10.1175/JCLI-D-19-0199.1.
Chou, C. C. K., Liu, S. C., Lin, C. Y., Shiu, C. J. & Chang, K. H. (2006), The trend of surface ozone in Taipei, Taiwan, and its causes: implications for ozone control strategies, Atmospheric Environment, 40 (21), 3898-3908, doi:10.1016/j.atmosenv.2006.02.018.
Cheng, F. Y. & Hsu, C. H. (2019), Long-term variations in PM2.5 concentrations under changing
meteorological conditions in Taiwan, Scientific Reports volume, 9 (1), 6635,
doi:10.1038/s41598-019-43104-x.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge,
S., Horowitz, L., Jensen, N. R., Lamarque, J. F., Naik, V., Oltmans, S. J., Schwab, J., Shindell,
D. T., Thompson, A. M., Thouret, V., Wang, Y. & Zbinden, R. M. (2014), Global distribution
and trends of tropospheric ozone: An observation-based review, Elementa: Science of the
Anthropocene, 2, 000029, doi: 10.12952/journal.elementa.000029.
Danielsen, D. E. (1968), Stratospheric-tropospheric exchange based on radioactivity, ozone and
potential vorticity, Journal of the Atmospheric Sciences, 25 (3), 502-518,
doi:10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.
Draxler, R. R. & Hess, G. D. (1998), An overview of the hysplit_4 modeling system for
trajectories, dispersion, and deposition, Australian Meteorological Magazine, 47, 295-308.
Fleming, Z. L., Doherty, R. M., Von, E. S., Malley, C., Cooper, O. R., Pinto, J. P., Colette, A.,
Xu, X., Simpson, D., & Schultz, M. G. (2018), Tropospheric ozone assessment report:
present‐day ozone distribution and trends relevant to human health. Elementa: Science of the
Anthropocene, 6 (1), 12, doi:10.1525/elementa.273.
Harris, D. C. (2007), Quantitative chemical analysis, 7th edition, pp. 381-382, W. H. Freeman
and Company, New York.
Han, J., Shin, B., Lee, M., Hwang, G., Kim, J., Shim, J., Lee, G. & Shim, C. (2015), Variations
of surface ozone at ieodo scean research station in the East China Sea and the influence of
Asian outflows, Atmospheric Chemistry and Physics, 15 (21), 12611-12621,
doi:10.5194/acp-15-12611-2015.
Jerry, R. Z., Luke, D. O., Sarah, A. S., Anne, R. D., Mark, A. O., Richard, D. M., Pawan, K. B.,
Lucien, F., Gordon, J. L., Jacquie, C. W., Anne, M. T., David, P. H., Natalya, A. K., Stacey,
M. F., Huang, L. K., Jaross1, G. R., Seftor, C. J., Deland, M. T., & Taylor, S. L. (2019),
Trends in global tropospheric ozone inferred from a composite record of
TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation,
Atmospheric Chemistry and Physics, 19 (5), 3257-3269, doi:10.5194/acp-19-3257-2019.
Junge, C. E. (1962), Global ozone budget and exchange between stratosphere and troposphere,
Tellus, 14, 363-377, doi: 10.1111/j.2153-3490.1962.tb01349.x.
Kleinman, L. I. (2005), The dependence of tropospheric ozone production rate on ozone
precursors, Atmosphere Environment, 39 (3), 575-586, doi: 10.1016/j.atmosenv.2004.08.047.
Kreyszig, E. (1968), Advanced engineering mathematics, 2nd edition, 898pp., J. Wiley and
Sons, New York.


Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V.,
Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan1, B. N., Boersma, K. F., Veefkind, J. P.,
Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z. & Streets, D. G. (2016), Aura
OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015,
Atmospheric Chemistry and Physics, 16 (7), 4605-4629, doi:10.5194/acp-16-4605-2016.
Lee, C. S., Chang, K. H. & Kim, H. (2018), Long-term (2005-2015) trend analysis of PM2.5 precursor gas NO¬2 and SO2 concentrations in Taiwan, Environmental Science and Pollution Research, 25 (22), 22136-22152, doi:10.1007/s11356-018-2273-y.
Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J. & Streets, D. (2017), India
is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Scientific
Reports, 7 (1), 14304, doi:10.1038/s41598-017-14639-8.
Lucas, D. D. & Akimoto, H. (2007), Contributions of anthropogenic and natural sources of
sulfur to SO2, H2SO4(g) and nanoparticle formation, Atmospheric Chemistry and Physics, 7,
7679–7721, doi: 10.5194/acpd-7-7679-2007.
Lu, Z., Streets, D. G., Zhang, Q., Wang, S., Carmichael, G. R., Cheng, Y. F., Wei, C., Chin, M.,
Diehl, T. & Tan, Q. (2010), Sulfur dioxide emissions in China and sulfur trends in east Asia
since 2000, Atmospheric Chemistry and Physics, 10 (4), 6311-6331,
doi:10.5194/acpd-10-8657-2010.
McConnell, R., Berhane, K., Gilliland, F., London, S. J., Islam T, Gauderman, W. J., Avol, E.,
Margolis H. G. & Peters J. M. (2002), Asthma in exercising children exposed to ozone: a
cohort study, The Lancet, 359 (9304), 386-391, doi: 10.1016/S0140-6736(02)07597-9.
Meng, Z. (2003), Oxidative damage of sulfur dioxide is a systemic oxidative damage agent,
Inhalation Toxicology, 15 (2),181-195, doi: 10.1080/08958370304476.
Okamoto, S., & Tanimoto, H. (2016), A review of atmospheric chemistry observations at
mountain sites, Progress in Earth and Planetary Science, 3 (1), 34-86,
doi: 10.1186/s40645-016-0109-2.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007),
An asian emission inventory of anthropogenic emission sources for the period 1980-2020,
Atmospheric Chemistry and Physics, 7 (3), 6843–6902, doi:10.5194/acpd-7-6843-2007.
O′Doherty S., Simmonds, P. G., Cunnold, D. M., Wang, H. J., Sturrock, G. A., Fraser, P. J.,
Ryall, D., Derwent, R. G., Weiss, R. F., Salameh, P., Miller, B. R. & Prinn, R. G. (2001), In
situ chloroform measurements at advanced global atmospheric gases experiment atmospheric
research stations from 1994 to 1998, Journal of Geophysical Research., 106 (D17), 20429-
20444, doi: 10.1029/2000JD900792.
Pachauri, R., Meyer, L., Plattner, G. & Stocker, T. (2014), Climate change 2014: synthesis
report, IPCC, doi:10013/epic.45156.
Pohl, H. L. J. & Iannucci, A. (1998), Toxicological profile: sulfur dioxide. U.S. Department of
health and human service, Gabon.
Rao, M. V., Lee, H., Creelman, R. A., Mullet, J. E. & Davis, K. R. (2000), Jasmonic acid
signaling modulates ozone-induced hypersensitive cell death, The Plant Cell, 12 (9), 1633-
1646, doi:10.1105/tpc.12.9.1633.
Randles, C. A., Silva, A. M. D., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R.,
Smirnov, A., Holben, B., Ferrare, R., Hair J. Y. S. & Flynn, C. J. (2017), The MERRA-2
aerosol reanalysis, 1980 onward. part I: system description and data assimilation evaluation,
Journal of Climate, 30 (17), 6851–6872, doi:10.1175/JCLI-D-16-0613.1.
Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J. & Zhang, Q. (2020), Effect
of changing NO¬¬x lifetime on the seasonality and long-term trends of satellite-observed
tropospheric NO¬¬¬¬2 columns over China, Atmospheric Chemistry and Physics, 20 (3), 1483-
1495, doi:10.5194/acp-20-1483-2020.
Smith, S. J., Aardenne J. V., Klimont, Z., Andres, R. J., Volke, A., & Arias, S. D. (2011),
Anthropogenic sulfur dioxide emissions: 1850-2005, Atmospheric Chemistry and Physics,
11 (3), 1101-1116, doi:10.5194/acp-11-1101-2011.
Skoog, D. A., Holler, F. J. & Crouch, S. R. (2007), Principles of instrumental analysis, 6th ed,
pp. 336-342, Belmont.
Streets, D. G., Tsai, N. Y., Akimoto, H., & Oka, K. (2000), Sulfur dioxide emissions in Asia in
the period 1985–1997, Atmospheric Environment, 34 (26), 4413–4424,
doi: 10.1016/S1352-2310(00)00187-4.
Tsuang, B. J., Tseng, K. H., Wang, J. L. & Cheng, M. T. (2009), Assessing the relationship
between air mass age and summer ozone episodes based on photochemical indices, Aerosol
Air Qual, Res, 9, 149-171, doi:10.4209/aaqr.2008.12.0062.
Wang, T., Dai, T., Lam, K. S., Poon, C. N. & Brasseur, G. P. (2019), Twenty‐five years of lower
tropospheric ozone observations in tropical east Asia: the influence of emissions and weather
patterns, Geophysical Research Letters, 46 (20), 11463-11470, doi:10.1029/2019GL084459.
Wargan, K., Labow, G., Frith, S., Pawson, S., Livesey, N. & Partyka, G. (2017), Evaluation of
the ozone fields in NASA’s MERRA-2 reanalysis, Journal of Climate, 30 (8), 2961-2988,
doi:10.1175/JCLI-D-16-0699.1.
Whelpdale, D. M., Dorling, S. R., Hicks, B. B. & Summers, P. W. (1996), Global acid deposition
assessment, pp. 7-32, World Meteorological Organization, Geneva.
WHO (2005), WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and
sulfur dioxide, pp. 14-18, World Meteorological Organization, Geneva.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L.,
Zhang, Y., Zhao, H., Zheng, Y., He, K. & Zhang, Q. (2018), Trends in China′s anthropogenic
emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry and
Physics, 18 (19), 14095-14111, doi:10.5194/acp-18-14095-2018.
林家慶(2008),鹿林山空氣品質背景監測站之背景值分析,碩士論文,國立中央大學大
氣物理研究所,台灣中壢。

洪若雅(2017),臺灣大氣背景PM2.5質量濃度之推估,碩士論文,國立中央大學大氣物理
研究所,台灣中壢。
李嘉仁(2017),平流層侵入對東亞地區自由對流層臭氧之影響,碩士論文,國立中央大
學化學研究所,台灣中壢。
蔡俊鴻、江鴻龍、張立鵬、廖哲甫、林建宏、賴威帆(2006),超細氣懸微粒水溶性無機
離子成份特性變異與前驅物及氣象因子關聯性研究,行政院國家科學委員會補助專題
研究計畫,NSC 96-2211-E-006-024,台灣台南。
張景儀(2016),從VOCs管制看空污治理的新趨勢與新想像,國立台灣大學風險社會與政策研究中心空污治理主題,台灣台北。
交通部(2014),大氣物理化學觀測系統之大氣監測系統標準作業程序,交通部中央氣象
局,CWB-STF-OD-003,台灣台北。
交通部(2020),觀測資料查詢,https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp,臺
東縣蘭嶼資料查詢月報表,台北,(瀏覽日期:2020年6月20日)。
台灣電力公司(2020),政府資料開放平臺,https://data.gov.tw/dataset/14135,鄉鎮市(郵遞
區)別用電統計資料,台北,(瀏覽日期:2020年6月17日)。
臺東縣政府(2020),臺東旅遊觀光網,https://tour.taitung.gov.tw/zh-tw/visitorstatics?page=1,
遊客統計,臺東,(瀏覽日期:2020年6月30日)。
行政院(2020),固定污染源管理資訊公開平台,https://aodmis.epa.gov.tw/opendata,台灣
電力公司台東營業處蘭嶼發電廠排放檢測資料,台北,(瀏覽日期:2020年6月31日)。
指導教授 林能暉 歐陽長風(Neng-Huei Lin Chang-Feng Ou-Yang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明