博碩士論文 107223033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.238.117.130
姓名 詹竣丞(Jun-Cheng Zhan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 觸媒式非甲烷總碳氫分析儀開發與驗證
(Design and Validation of a Catalytic-type Non-methane Hydrocarbon Analyzer)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析
★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用★ VOC前濃縮與預警系統之建構
★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用★ 臭氧前趨物連續監測與臭氧生成之光化學探討
★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析
★ 近地表臭氧前驅物分析之前濃縮技術改良★ 自動化噴霧捕捉分析系統之建立與研究
★ 大體積固相微萃取水中揮發性有機污染物★ 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳﹑有機污染物垂直探空光化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要針對周界環境中的非甲烷總碳氫化合物 (Non-methane Hydrocarbons, NMHC) 進行分析儀的開發,以及測試在線式熱脫附GC/MS連續監測方法 (簡稱TD-GC/MS) 於監測工業區所排放之有害空氣污染物 (Hazardous Air Pollutants, HAPs)。
依照我國EPA公告之標準方法NIEA A740.10C,現今監測周界NMHC以觸媒法為主要方式,其原理為觸媒於高溫下可轉化除甲烷外之VOCs,因此僅有甲烷會通過觸媒管並流至FID得到甲烷訊號。此外,藉由改變樣品流道,即可使樣品通過空管並獲得總碳氫化合物訊號,隨後由總碳氫化合物濃度扣除甲烷濃度後便可計算出非甲烷總碳氫化合物數值。
本研究第一部分為連續進樣觸媒法之NMHC分析儀之開發。首先嘗試以貴金屬觸媒Pd/Al2O3作為高溫氧化VOCs的材料,經實驗測試鈀金屬觸媒具有良好的物種選擇性與催化能力,僅需少量即可轉化周界中的NMHC,因此該觸媒被應用於自組裝NMHC分析儀內。然而,鈀金屬觸媒易受含氯物種的毒化而使催化能力下降,故本研究於分析儀中改以具有較高耐受性的Hopcalite觸媒進行測試,而結果顯示儀器於連續監測時具有更佳的分析穩定性。
此外本研究也將開發出之觸媒法分析儀,與本實驗室先前開發出之流動注射法 (Flow Injection),以及適用於煙道NMHC監測標準方法–層析管柱逆吹法 (NIEA A723.74B) 等三種不同方式之分析儀於實驗室內進行十日平行比對,並抽引鄰近實驗室之空氣作為分析樣品。實驗結果顯示,三者皆具有相似的濃度變化趨勢,相較於流動注射法與層析管逆吹法透過程式對峰面積積分而使變異度大,以訊號差做為定量方式的連續進樣法於總碳氫化合物與甲烷的連續監測濃度圖譜上,具有較為良好的精密度。
本研究第二部分為在鄰近六輕石化廠區之地點架設實驗室自行開發TD-GC/MS在線式連續監測系統,並對廠區周圍的HAPs進行定性與定量,於監測期間每小時可獲得一筆HAPs濃度資訊。本研究目的為針對現地質譜連續監測技術,於固定污染源周圍進行穩定性與適用性之實測,第一段監測期主要使用中極性DB-624管柱進行實地分析,第二階段監測期則使用PLOT管柱分析低碳數化合物,如氯乙烯與1,3-丁二烯,由實場監測結果顯示,空氣污染物之濃度變化與鄰近光化測站所提供之數據具有相同趨勢,因此可有效驗證TD-GC/MS方法。
摘要(英) In this study, a non-methane hydrocarbons (NMHC) analyzer has been designed and validated. An online thermal desorption GC/MS method (denoted as TD-GC/MS) was tested in the field to measure hazardous air pollutants (HAPs) from an industrial complex.
According to the Taiwan EPA NIEA A740.10C method, the analytical method based on catalytic reaction is mainly used to measure ambient NMHC. By exploiting the selectivity of a catalyst, ambient NMHC can be measured with minute resolution. In principle, all NMHC except methane can be oxidized by a selected catalyst at high temperatures. The catalyst is chosen in a way that only NMHC can be oxidized and methane is allowed to pass through the catalyst without oxidation and be detected by a flame ionization detector (FID). Subsequently, the total hydrocarbons including methane is measured by FID. Thus, the NMHC signal can be obtained by subtracting methane from the total hydrocarbons reading.
The first part of the research is to develop the catalytic-type NMHC analyzer. At the early stage, Pd catalysts were tested to oxidize NMHC, and the results indicated that Pd catalysts have sufficient selectivity and efficiency in that only 40 mg Pd catalysts were needed to completely oxidize NMHC; thus Pd catalysts was used in our self-assembled NMHC analyzer. However, Pd catalysts were susceptible to being poisoned by halogen-containing species and the catalytic efficiency decreased over time. Alternatively, Hopcalite as the catalyst was used to replace the Pd catalyst in the NMHC analyzer for further testing. The requirement of long-term stability was achieved in the subsequent numerous tests.
In addition, this study also compared three different types of NMHC analyzers of different working principles, including the catalyst-continuous flow type, the catalyst-flow injection type, and the back-flush GC method (NIEA 723.74B) which is designed to withstand high concentrations of NMHC in the flue gas. To test the stability and performance of the three analyzers, they were placed in the laboratory for 10 days measuring air from neighboring laboratories laden with organic compounds. The results showed that the three analyzers displayed similar variation trends. However, the catalyst-continuous flow NMHC analyzer showed higher precision than the other two since the other two methods calculate NMHC concentrations based on peak integration resulting in a poorer S/N ratio.
The second part is to test an online TD-GC/MS method developed by our laboratory near the sixth Naphtha Cracking Complex. The purpose of this study is to test the long-term stability and applicability of the online TD-GC/MS method. In the first monitoring period, a medium polar DB-624 column was used for the analysis. A PLOT column was used to focus on lighter compounds such as vinyl chloride and 1,3-butadiene in the second monitoring period. Similar results were obtained by the neighboring Photochemical Assessment Monitoring Stations (PAMS) to effectively validate the robustness of the self-developed TD-GC/MS method.
關鍵字(中) ★ 揮發性有機化合物
★ 非甲烷總碳氫化合物
★ 觸媒式非甲烷總碳氫分析儀
★ 連續自動監測設施
★ 有害空氣汙染物
關鍵字(英) ★ Volatile organic compounds
★ Non-methane hydrocarbons
★ Catalytic-type Non-methane Hydrocarbon Analyzer
★ Continuous Emission Monitoring System
★ Hazardous Air Pollutants
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xi
表目錄 xv
一、前言 1
1-1研究緣起 1
1-2排放情況與法規 5
1-3 VOCs分析方法 9
1-4標準方法回顧 10
1-5研究動機 14
二、連續進樣觸媒法 15
2-1觸媒應用 15
2-1-1觸媒法處理VOCs 15
2-1-2觸媒法偵測NMHC 16
2-2觸媒選擇 17
2-3鈀觸媒催化測試 19
2-3-1測試系統 19
2-3-2測試結果 25
2-4鈀金屬觸媒方法 28
2-4-1連續進樣測試 28
2-4-2觸媒填充優化 32
2-4-3分析系統建置 37
2-5自組裝NMHC分析儀 40
2-5-1儀器開發 40
2-5-2組件控制 41
2-5-3自動化監測軟體 42
2-5-4儀器穩定性 44
2-5-5觸媒耐受性 48
2-6 Hopcalite觸媒方法 51
2-6-1觸媒測試 52
2-6-2實機測試 58
2-6-3儀器穩定性 61
2-7小結 64
三、分析方法平行比對 65
3-1研究目標 65
3-2相關分析方法 66
3-2-1流動注射觸媒法 66
3-2-2層析管柱逆吹法 69
3-3系統數據 72
3-3-1系統線性與精密度 72
3-3-2方法偵測極限 75
3-3-3水氣模擬測試 76
3-4真實樣品連續監測 79
3-5小結 86
四、在線式連續監測系統 87
4-1研究背景 87
4-2研究方法 89
4-3儀器介紹 90
4-4系統數據 95
4-4-1檢量線與相關係數 95
4-4-2方法偵測極限 97
4-5研究成果 98
4-5-1實場監測 98
4-5-2監測結果 101
4-6小結 109
五、總結 111
六、參考文獻 113
參考文獻 [1] 行政院環境保護署,空氣品質監測網。
https://airtw.epa.gov.tw/CHT/Information/Standard/AirQualityIndicator.aspx. [8 Jul. 2020]
[2] R. Atkinson (1987) A Structure-activity Relationship for the Estimation of Rate Constants for the Gas-Phase Reactions of OH Radicals with Organic Compounds. International Journal of Chemical Kinetics 19, 799-828.
[3] T.B. Ryerson, M. Trainer, J.S. Holloway, D.D. Parrish, L.G. Huey, D.T. Sueper, G.J. Frost, S.G. Donnelly, S. Schauffler, E.L. Atlas, W.C. Kuster, P.D. Goldan, G. Hubler, J.F. Meagher, F.C. Fehsenfeld (2001) Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 292, 719-723.
[4] U.S. EPA, Health Effects of Ozone in the General Population as follows. https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population. [12 Sep. 2016]
[5] J. Seltzer, B.G. Bigby, M. Stulbarg, M.J. Holtzman, J.A. Nadel, I.F. Ueki, G.D. Leikauf, E.J. Goetzl, H.A. Boushey (1986) O3-induced Change in Bronchial Reactivity to Methacholine and Airway Inflammation in Humans. Ameriacn Physiological Society 60, 1321-1326
[6] M.L. Bell, A. McDermott, S.L. Zeger, J.M. Samet, F. Dominici (2004) Ozone and Short-term Mortality in 95 US Urban Communities, 1987-2000. American Medical Association 292, 2372-2378.
[7] A. Gryparis, B. Forsberg, K. Katsouyanni, A. Analitis, G. Touloumi, J. Schwartz, E. Samoli, S. Medina, H.R. Anderson, E.M. Niciu, H.E. Wichmann, B. Kriz, M. Kosnik, J. Skorkovsky, J.M. Vonk, Z. Dortbudak (2004) Acute Effects of Ozone on Mortality from the "Air Pollution and Health: a European Approach" Project. American Journal of Respiratory and Critical Care Medicine 170, 1080-1087.
[8] M. Amann, D. Derwent, B. Forsberg, O. Hänninen, F. Hurley, M. Krzyzanowski, F. de Leeuw, S. J. Liu, C. Mandin, J. Schneider, P. Schwarze, D. Simpson, Health Risks of Ozone from Long Range Transboundary Air Pollution WHO Regional Office for Europe, Copenhagen, 2008.
[9] U.S. EPA, Particulate Matter (PM) Basics as follows.
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics. [14 Nov. 2018]
[10] 余國賓,PM2.5知多少,科學月刊,433,4-7,2018。
[11] C.A. Pope III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston (2002) Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. American Medical Association 287, 1132-1141.
[12] R. Atkinson (2000) Atmospheric Chemistry of VOCs and NOx. Atmospheric Environment 34, 2063-2101.
[13] M. Camredon, B. Aumont, J. Lee-Taylor, S. Madronich (2007) The SOA/VOC/NOx System: An Explicit Model of Secondary Organic Aerosol Formation. Atmospheric Chemistry and Physics 7, 5599-5610.
[14] U. Poschl (2005) Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angewandte Chemie International Edition in English 44, 7520-7540.
[15] T.C. Bond, R.W. Bergstrom (2007) Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Science and Technology 40, 27-67.
[16] U. Baltensperger, J. Dommen, M.R. Alfarra, J. Duplissy, K. Gaeggeler, A. Metzger, M.C. Facchini, S. Decesari, E. Finessi, C. Reinnig, M. Schott, J. Warnke, T. Hoffmann, B. Klatzer, H. Puxbaum, M. Geiser, M. Savi, D. Lang, M. Kalberer, T. Geiser (2008) Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project. Journal of Aerosol Medicine and Pulmonary Drug Delivery 21, 145-154.
[17] U.S. EPA, What is the definition of VOC as follows.
https://www.epa.gov/air-emissions-inventories/what-definition-voc [15 Mar. 2019]
[18] 40 C.F.R. Part 51-Requirements for Preparation, Adoption, and Submittal of Implementation Plans, Office of the Federal Register (OFR), Washington, DC.
[19] 揮發性有機物空氣污染管制及排放標準,行政院環境保護署,2013。
[20] C.C. Chang, J.L. Wang, S.C. Candice Lung, S.C. Liu, C.J. Shiu (2009) Source Characterization of Ozone Precursors by Complementary Approaches of Vehicular Indicator and Principal Component Analysis. Atmospheric Environment 43, 1771-1778.
[21] C.C. Chang, J.L. Wang, S.C. Candice Lung, C.Y. Chang, P.J. Lee, C. Chew, W.C. Liao, W.N. Chen, C.F. Ou-Yang (2014) Seasonal Characteristics of Biogenic and Anthropogenic Isoprene in Tropical-Subtropical Urban Environments. Atmospheric Environment 99, 298-308.
[22] S. Reimann, P. Calanca, P. Hofer (2000) The Anthropogenic Contribution to Isoprene Concentrations in a Rural Atmosphere. Atmospheric Environment 34, 109-115.
[23] 107年空氣污染防制總檢討,行政院環境保護署,2018。
[24] 行政院環保署空保處,全國空氣污染物排放量清冊資訊系統。
https://teds.epa.gov.tw. [22 May 2020]

[25] S.P. Chen, W.C. Liao, C.C. Chang, Y.C. Su, Y.H. Tong, J.S. Chang, J.L. Wang (2014) Network Monitoring of Speciated vs. Total Non-methane Hydrocarbon Measurements. Atmospheric Environment 90, 33-42.
[26] A. Kansal (2009) Sources and Reactivity of NMHCs and VOCs in the Atmosphere: A Review. Journal of Hazardous Materials 166, 17-26.
[27] 空氣污染防制法,行政院環境保護署,2018。
[28] 移動污染源空氣污染防制費收費費率,行政院環境保護署,2017。
[29] 固定污染源空氣污染防制費收費費率,行政院環境保署署,2018。
[30] 公私場所固定污染源空氣污染物排放量申報管理辦法,行政院環境保護署,2019。
[31] R.M. Heck, R.J. Farrauto, S.T. Gulati, Catalytic Air Pollution Control: Commercial Technology, 3rd Edition, Wiley, New Jersey, 2009.
[32] 行政院環保署環境檢驗所,空氣中總碳氫化合物自動檢測方法 (NIEA A740.10C),2014。
[33] U.S. EPA, Method 25: Determination of Total Gaseous Non-methane Organic Emissions as Carbon, 1997.
[34] 行政院環保署環境檢驗所,排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法 (NIEA A723.74B), 2019。
[35] 行政院環保署環境檢驗所,排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-觸媒轉化法 (NIEA A758.70B),2019。
[36] 林文川,製程VOCs廢棄之收集與處理,工業污染防治,110,105-173,2009。
[37] O. Saitoh, M. Imaki, H. Asami, Separation Method of Methane from Other Hydrocarbons than Methane, US4042332A, United States Patent, 1977.
[38] M.S. Kamal, S.A. Razzak, M.M. Hossain (2016) Catalytic Oxidation of Volatile Organic Compounds (VOCs) - A Review. Atmospheric Environment 140, 117-134.
[39] A. Aranzabal, B. Pereda-Ayo, M. González-Marcos, J. González-Marcos, R. López-Fonseca, J. González-Velasco (2014) State of the Art in Catalytic Oxidation of Chlorinated Volatile Organic Compounds. Chemical Papers 68, 1169-1186.
[40] S. Huang, C. Zhang, H. He (2008) Complete Oxidation of o-Xylene over Pd/Al2O3 Catalyst at Low Temperature. Catalysis Today 139, 15-23.
[41] S.C. Kim, W.G. Shim (2009) Properties and Performance of Pd Based Catalysts for Catalytic Oxidation of Volatile Organic Compounds. Applied Catalysis B: Environmental 92, 429-436.
[42] O. Demoulin, B. Le Clef, M. Navez, P. Ruiz (2008) Combustion of Methane, Ethane and Propane and of Mixtures of Methane with Ethane or Propane on Pd/γ-Al2O3 Catalysts. Applied Catalysis A: General 344, 1-9.
[43] J.R. GonzaÂlez-Velasco, A. Aranzabal, J.I. GutieÂrrez-Ortiz, R. LoÂpez-Fonseca, M.A. GutieÂrrez-Ortiz (1998) Activity and Product Distribution of Alumina Supported Platinum and Palladium Catalysts in the Gas-phase Oxidative Decomposition of Chlorinated Hydrocarbons. Applied Catalysis B: Environmental 19, 189-197.
[44] E.C. Njagi, H.C. Genuino, C.K. King’ondu, S. Dharmarathna, S.L. Suib (2012) Catalytic Oxidation of Ethylene at Low Temperatures Using Porous Copper Manganese Oxides. Applied Catalysis A: General 421-422, 154-160.
[45] 林天立,碩士論文,開發甲烷/非甲烷總烴分析儀應用於污染源觸發採樣,化學學系,國立中央大學,2019。
[46] C.C. Wang, H.C. Hua, W.C. Lin, H.C. Hsieh, J.L. Wang (2018) A New Gas Chromatography Method for Continuous Monitoring of Non-Methane Hydrocarbons as an Analogy of Volatile Organic Compounds in Flue Gas. Aerosol and Air Quality Research 18, 2913-2921.
[47] 林崴涓,碩士論文,煙道氣揮發性有機化合物連續監測方法開發,化學學系,國立中央大學,2015。
[48] U.S. EPA, Overview of the Clean Air Act and Air Pollution as follows. https://www.epa.gov/clean-air-act-overview. [27 Jan. 2020]
[49] 固定污染源有害空氣污染物排放標準草案總說明,行政院環境保護署, 2019。
[50] 行政院環保署環境檢驗所,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法 (NIEA A715.15B),2014。
指導教授 王家麟(Jia-Lin Wang) 審核日期 2020-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明