博碩士論文 107223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:13.58.64.81
姓名 陳柏宏(Po-Hung Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備奈米鈀金屬於氮摻雜中孔洞碳複合材料在有機催化反應之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要分為兩大部分,在第一部分研究中,利用奈米鈀金屬還原在中孔洞碳氮材料之三維結構N-CMK9以及未摻雜氮之三維結構CMK-9中,利用化學還原劑使金屬還原速率上升,並藉由N-CMK9具有高比表面積以及缺陷的CN位點,使離子鈀金屬能快速平均分散並負載在N-CMK9孔洞之中並還原奈米鈀金屬顆粒。實驗過程中利用高分子界面活性劑P123作為模板,和矽源TEOS(Tetraethyl orthosilicate)在酸性下進行合成,得到對稱性為Ia3d cubic構型的中孔洞矽材KIT-6,再利用糠醇做為碳源將矽材碳化後,可得到有序中孔洞管狀碳材CMK-9,由於CMK-9具有高比表面積以及良好的孔洞體積,此外加上摻雜氮於此中孔洞材材料,合成出的N-CMK9作為載體可以提高奈米鈀金屬分散率進而提高催化活性。本實驗將製成的Pd(x)@N-CMK9以及Pd(x)@CMK9應用在鈴木偶聯催化反應當中,分別探討三維結構碳材及氮摻雜碳材結構、不同含浸量、鹼以及不同溶劑對催化活性之影響。經過一系列的研究,使用Pd(10)@N-CMK9作為催化劑去進行鈴木偶聯催化反應,其轉換頻率(TOF)高達1965.4 h-1 。在這項研究中,Pd(10)@N-CMK9展示了其用於鈴木偶聯催化反應為高活性催化劑。
第二部分研究中,同樣透過奈米模鑄法(Nanocasting)合成出中孔洞碳氮材料(N-CMK9),並將奈米鈀金屬顆粒負載在N-CMK9上作為催化觸媒。藉由N-CMK9上不僅可以利用有缺陷的CN位點和氮間隙可以很均勻分散鈀金屬顆粒,從而提高催化活性。將CMK-9以及N-CMK9含浸於鈀金屬離子前驅液,利用化學還原法將金屬離子還原成金屬奈米顆粒(Pd@CMK-9, Pd@N-CMK9),本實驗將材料應用於4-Nitrophenol還原催化反應,分別探討不同載體以及不同含浸金屬量對催化活性之影響。在催化4-Nitrophenol還原反應的研究中,Pd(5)@N-CMK9表現出很高的催化活性,其k值高達77336.4 s-1g-1。在這項研究中,Pd(5)@N-CMK9展示了其用於4-Nitrophenol還原催化反應中為高活性催化劑。
摘要(英) This thesis consists of two parts. In the first part of this study, the palladium nanoparticles (Pd NPs) are successfully confined within the 3D structure of the mesoporous nitrogen-doped carbon material N-CMK9 and the carbon material CMK-9. The mixture chemically reduced by reagent containing NaBH4 and NH3BH3 to obtain Pd(x)@CMK-9 and Pd(x)@N-CMK-9. It was found that N-CMK9 has a high specific surface area and defective CN sites, so that the palladium metal can be quickly and evenly dispersed in the pores of the N-CMK9. The polymer surfactant P123 was used as a template to synthesize with TEOS (Tetraethyl orthosilicate) under acidic conditions to obtain the mesoporous silicon KIT-6, which has a cubic structure with Ia3 ̅d symmetry. Using furfuryl alcohol as the carbon source and after carbonization, a 3D hollow-type ordered mesoporous carbon CMK-9 can be obtained. Since CMK-9 has a high specific surface area and a good pore volume, in addition of the nitrogen doped in the mesoporous material (N-CMK9) which can be used as a carrier. It can enhance the dispersion and improve the catalytic activity. In this experiment, the Pd(x)@N-CMK9 and Pd(x)@CMK9 were used in the Suzuki coupling catalytic reaction, furthermore compare 3D carbon material and nitrogen-doped carbon material, different base and different solvent respectively. Among all the as-prepared catalysts, Pd(10)@N-CMK9 exhibited the highest turnover frequency (TOF) of 1965.4 h-1. In this study, Pd(10)@N-CMK9 is an excellent high active catalyst for Suzuki coupling reaction.
In the second part of the study, a mesoporous N-doped carbon material (N-CMK9) was synthesized by nanocasting, and palladium nanoparticles were supported to N-CMK9 as a catalytic catalyst. N-doped carbon material N-CMK9 not only has defective CN sites and nitrogen gaps can be used to uniformly disperse palladium metal particles, but also improve catalytic activity. CMK-9 and N-CMK9 were impregnated with palladium metal ion precursor solution, and the metal ions were reduced to metal nanoparticles by chemical reduction method (Pd@CMK-9, Pd@N-CMK9). It was used as the catalyst for the reduction of 4-nitrophenol besides explored the effects of different carriers and different amounts of impregnated metal on the catalytic activity. In the study of the catalytic reduction of 4-Nitrophenol, Pd(5)@N-CMK9 exhibited the highest turnover frequency of 80467.3 s-1g-1.
關鍵字(中) ★ 中孔洞碳材
★ 催化
★ 鈀金屬
關鍵字(英)
論文目次 中文摘要 I
ABSTRACT VII
目錄 IX
圖目錄 XV
表目錄 XXI
第一章 序論 1
第壹部分 鈀金屬在中孔洞碳氮材催化鈴木偶聯反應 1
1-1 中孔洞二氧化矽 1
1-1-1中孔洞材料之介紹 1
1-1-2中孔洞二氧化矽合成方法 4
1-1-3軟性模板-微胞結構 6
1-2 有序中孔洞碳材 9
1-2-1奈米模鑄法(Nanocasting)合成機制 11
1-2-2奈米模鑄法合成有序中孔洞碳材之發展 12
1-3 有序中孔洞碳氮材 17
1-3-1奈米模鑄法合成有序中孔洞碳氮材之發展 19
1-3-2 鈀金屬催化有機偶聯反應 26
1-3-3鈀金屬催化Suzuki-Miyaura反應機制介紹 29
1-3-4奈米鈀金屬催化Suzuki-Miyaura反應文獻回顧 30
第貳部分 鈀金屬在中孔洞4-硝基苯酚還原反應 33
1-4 4-硝基苯酚介紹 33
1-4-1 4-硝基苯酚還原機制介紹 34
1-5 研究動機與目的 38
第二章 實驗部分 40
2-1 實驗藥品 40
2-2 鈀金屬催化Suzuki-Miyaura反應實驗 42
2-2-1三維立方Ia3d中孔洞管狀碳材CMK-9合成 42
2-2-2三維立方Ia3d中孔洞管狀碳氮材N-CMK9合成 42
2-2-3以PdCl2為前驅物還原至CMK-9與N-CMK9之中 43
2-2-3.1利用雙還原劑化學還原法 43
2-2-4利用Pd(x)@CMK-9與Pd(x)@N-CMK9催化Suzuki-Miyaura反應實驗 45
2-2-5催化Suzuki-Miyaura反應重複使用實驗 46
2-3 鈀金屬催化4-硝基苯酚還原實驗 47
2-3-1 利用Pd(x)@CMK-9及Pd(x)@N-CMK9催化4-硝基苯酚還原實驗 47
2-3-2 Pd(x)@N-CMK9催化4-硝基苯酚還原重複實驗 47
2-4 實驗設備 48
2-4-1實驗合成設備 48
2-4-2實驗鑑定儀器 48
第三章 結果與討論 50
第壹部分 鈀金屬在中孔洞碳氮材催化鈴木偶聯反應 50
3-1 Pd(x)@CMK-9以及Pd(x)@N-CMK9材料系列 50
3-1-1基本性質鑑定 50
3-1-1.1 SAXRD繞射圖譜 50
3-1-1.2 WAXRD繞射圖譜 53
3-1-1.3等溫氮氣吸脫附 55
3-1-1.4 SEM影像 61
3-1-1.5 TEM圖像 65
3-1-1.6 XPS結果分析 75
3-1-2鈀催化鈴木偶聯反應實驗 81
3-1-2.1 Pd(x)@CMK-9催化鈴木偶聯反應 81
3-1-2.2 Pd(x)@N-CMK9催化鈴木偶聯反應 83
3-1-2.3不同材料對催化鈴木偶聯反應之比較 84
3-1-2.4不同鹼對催化鈴木偶聯反應之比較 86
3-1-2.5 不同溶劑對催化鈴木偶聯反應之比較 88
3-1-3 Pd(10)@N-CMK9催化鈴木偶聯反應重複利用之實驗 91
3-1-3.1 Pd(10)@N-CMK9 5th回收利用 91
3-1-3.2 Pd(10)@N-CMK9 5th XRD繞射圖譜 92
3-1-3.3 Pd(10)@N-CMK9 5th的TEM圖譜 93
第貳部分 鈀金屬在中孔洞碳氮材催化4-硝基苯酚還原反應 96
3-2-1鈀催化4-硝基苯酚還原反應 96
3-2-2.1 Pd(x)@CMK-9之4-硝基苯酚還原反應催化活性結果比較 99
3-2-2.2 Pd(x)@N-CMK9之4-硝基苯酚還原反應催化活性結果比較 102
3-2-3 Pd(5)@N-CMK9催化4-硝基苯酚還原反應重複利用之實驗 106
3-2-3.1 Pd(5)@N-CMK9 5th XRD繞射圖譜 107
3-2-3.2 Pd(5)@N-CMK9 5th TEM圖 109
第四章 結論 111
第五章 參考文獻 113
參考文獻 1. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Pure Apple. Chem. 1972, 31, 578-638.
2. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 2002, 54 (1), 47-58.
3. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
4. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.
5. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of Hazardous Materials 2011, 192 (1), 277-283.
6. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. Journal of Materials Chemistry 2006, 16 (24), 2347-2353.
7. Deere, J.; Magner, E.; Wall, J.; Hodnett, B., Adsorption and activity of cytochrome c on mesoporous silicatesElectronic supplementary information (ESI) available: experimental details. Chemical Communications 2001, (5), 465-465.
8. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. Journal of Materials Science 2017, 52 (11), 6322-6340.
9. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. The Journal of Physical Chemistry C 2012, 116 (11), 6512-6519.
10. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catalysis Science & Technology 2016, 6 (19), 7186-7192.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous and Mesoporous Materials 2017, 247, 23-30.
13. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters 2004, 396 (4-6), 252-255.
14. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
15. Frank, H.; Maximilian, C.; Jürgen, M.; Michael, F., Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
16. Yang, K. N.; Zhang, C. Q.; Wang, W.; Wang, P. C.; Zhou, J. P.; Liang, X. J, pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer biology & medicine 2014, 11(1), 34.
17. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
18. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.
20. Zhang, J.; Li, X.; Li, X., Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science 2012, 37 (8), 1130-1176.
21. D. Fennell Evans, H. W., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999, Vol. 2nd Edition.
22. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
23. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
24. Wang, W.; Yuan, D., Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific reports 2014, 4, 5711.
25. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
26. Wan, L.; Jiao, J.; Cui, Y.; Guo, J.; Han, N.; Di, D.; Chang, D.; Wang, P.; Jiang, T.; Wang, S., Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology 2016, 27 (13), 135102.
27. Lamond, T. G.; Marsh, H., The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1 (3), 293-307.
28. Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 2000, 12 (1), 62-65.
29. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
30. Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, 24 (9), 3221-3227.
31. Marsh, H.; Rand, B., The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. Carbon 1971, 9 (1), 63-77.
32. Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules. Chemistry of Materials 1996, 8 (2), 454-462.
33. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33 (8), 1085-1090.
34. Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35 (7), 1031-1033.
35. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
36. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
37. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
38. Knox, J. H., Unger, K. K.; Mueller, H. Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography. Journal of Liquid Chromatography 1983, 6 (S1), 1-36.
39. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
40. Bonelli, B.; Esposito, S.; Freyria, F. S., Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania. Titanium Dioxide, 2017, 119-141.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548.
25. Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C 2007, 111 (23), 8268-8277.
26. Kleitz, F.; Hei Choi, S.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
27. Almar, L.; Colldeforns, B.; Yedra, L.; Estrade, S.; Peiro, F.; Morata, A.; Andreu, T.; Tarancon, A., High-temperature long-term stable ordered mesoporous Ni-CGO as an anode for solid oxide fuel cells. Journal of Materials Chemistry A 2013, 1 (14), 4531-4538.
28. Ma, X.; Jiang, T.; Han, B.; Zhang, J.; Miao, S.; Ding, K.; An, G.; Xie, Y.; Zhou, Y.; Zhu, A., Palladium nanoparticles in polyethylene glycols: Efficient and recyclable catalyst system for hydrogenation of olefins. Catalysis Communications 2008, 9 (1), 70-74.
29. Wang, D.; Astruc, D., The Golden Age of Transfer Hydrogenation. Chemical Reviews 2015, 115 (13), 6621-6686.
30. Bhuyan, D.; Saikia, L., Scavenging Pd2+ on Amine-Functionalized SBA-15: A Facile Synthesis of Leach-Free Pd0 Nanocatalyst for Base-Free Chemoselective Transfer Hydrogenation of Olefins. ChemistrySelect 2017, 2 (22), 6350-6358.
31. Chen, A.; Li, Y.; Chen, J.; Zhao, G.; Ma, L.; Yu, Y., Selective Hydrogenation of Phenol and Derivatives over Polymer-Functionalized Carbon-Nanofiber-Supported Palladium Using Sodium Formate as the Hydrogen Source. ChemPlusChem 2013, 78 (11), 1370-1378.
32. Vernekar, A. A.; Patil, S.; Bhat, C.; Tilve, S. G., Magnetically recoverable catalytic Co–Co2B nanocomposites for the chemoselective reduction of aromatic nitro compounds. RSC Advances 2013, 3 (32), 13243-13250.
33. Sarmah, P. P.; Dutta, D. K., Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay. Green Chemistry 2012, 14 (4), 1086-1093.
34. Zhang, C.; Leng, Y.; Jiang, P.; Li, J.; Du, S., Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect 2017, 2 (20), 5469-5474.
35. Harraz, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A., Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. Journal of Catalysis 2012, 286, 184-192.
36. Gong, L.-H.; Cai, Y.-Y.; Li, X.-H.; Zhang, Y.-N.; Su, J.; Chen, J.-S., Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chemistry 2014, 16 (8), 3746-3751.
37. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43 (6), 1293-1302.
38. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
39. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
40. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.

41. Gu, D.; Schüth, F., Synthesis of non-siliceous mesoporous oxides. Chemical Society Reviews 2014, 43 (1), 313-344.
42. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
43. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
44. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
45. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. 2001.
46. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
47. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
48. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43 (6), 1293-1302.
49. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
50. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
51. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
52. Liang, C.; Li, Z.; Dai, S., Mesoporous Carbon Materials: Synthesis and Modification. Angewandte Chemie International Edition 2008, 47 (20), 3696-3717.
53. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
54. Wang, Y.; Wang, X.; Antonietti, M., Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition 2012, 51 (1), 68-89.
55. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science 2012, 5 (5), 6717-6731.
56. Zhu, C.; Dong, S., Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5 (5), 1753-1767.
57. Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M., High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials 2010, 20 (11), 1827-1833.
58. Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S.-W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W., Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. Journal of Materials Chemistry A 2014, 2 (25), 9490-9495.
59. Deng, Q.-F.; Liu, L.; Lin, X.-Z.; Du, G.; Liu, Y.; Yuan, Z.-Y., Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal 2012, 203, 63-70.
60. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials 2013, 23 (18), 2322-2328.
61. Xiao, J.; Xie, Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H., Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental 2016, 181, 420-428.
62. Malik, R.; Tomer, V. K.; Dankwort, T.; Mishra, Y. K.; Kienle, L., Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. Journal of Materials Chemistry A 2018, 6 (23), 10718-10730.
63. Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y., Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem 2010, 3 (4), 435-439.
64. Yan, H., Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chemical Communications 2012, 48 (28), 3430-3432.
65. Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y., Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials 2005, 17 (13), 1648-1652.
66. Mane, G. P.; Dhawale, D. S.; Anand, C.; Ariga, K.; Ji, Q.; Wahab, M. A.; Mori, T.; Vinu, A., Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A 2013, 1 (8), 2913-2920.
67. Qiu, Y.; Gao, L., Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chemical Communications 2003, (18), 2378-2379.
68. Guo, Q.; Yang, Q.; Zhu, L.; Yi, C.; Zhang, S.; Xie, Y., A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications 2004, 132 (6), 369-374.
69. Kaatz, F. H.; Dai, J. Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H., Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE). Journal of Crystal Growth 2003, 247 (3), 509-515.
70. Zimmerman, J. L.; Williams, R.; Khabashesku, V. N.; Margrave, J. L., Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters 2001, 1 (12), 731-734.

71. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548.
72. Zhong, L.; Anand, C.; Lakhi, K. S.; Lawrence, G.; Vinu, A., Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports 2015, 5, 12901.
73. Vinu, A.; Srinivasu, P.; Sawant, D. P.; Mori, T.; Ariga, K.; Chang, J.-S.; Jhung, S.-H.; Balasubramanian, V. V.; Hwang, Y. K., Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials 2007, 19 (17), 4367-4372.
74. Lakhi, K. S.; Cha, W. S.; Joseph, S.; Wood, B. J.; Aldeyab, S. S.; Lawrence, G.; Choy, J.-H.; Vinu, A., Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 2015, 243, 209-217.
75. Jin, X.; Balasubramanian, V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A., Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metal-Free Basic Catalyst. Angewandte Chemie International Edition 2009, 48 (42), 7884-7887.
76. Talapaneni, S. N.; Mane, G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A., Synthesis of Nitrogen-Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem 2012, 5 (4), 700-708.
77. Talapaneni, S. N.; Anandan, S.; Mane, G. P.; Anand, C.; Dhawale, D. S.; Varghese, S.; Mano, A.; Mori, T.; Vinu, A., Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry 2012, 22 (19), 9831-9840.
78. Ma, F.; Zhao, H.; Sun, L.; Li, Q.; Huo, L.; Xia, T.; Gao, S.; Pang, G.; Shi, Z.; Feng, S., A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry 2012, 22 (27), 13464-13468.
79. Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W., Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources 2013, 230, 50-58.
80. Sun, G.; Ma, L.; Ran, J.; Li, B.; Shen, X.; Tong, H., Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochimica Acta 2016, 194, 168-178.
81. YIN, L.; Liebscher, J. Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chemical Reviews 2006,107(1), 133-173
82. Johansson Seechurn CC;Kitching MO; Colacot TJ; Snieckus V Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angewandte Chemie 2012, 51(21), 5062-5085
83. Len, Christophe; Bruniaux, Sophie; Delbecq, Frederic; Parmar, Virinder S. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling in Continuous Flow. Catalysts 2017, 7(5), 146
84. Jin Liu; Jufang Hao; Chencheng Hu; Baojiang He; Jiangbo Xi; Junwu Xiao; Shuai Wang, Palladium Nanoparticles Anchored on Amine-Functionalized Silica Nanotubes as a Highly Effective Catalyst. The Journal of Physical Chemistry C 2018, 122(5), 2696-2703
85. Nilesh Narkhede; Bhawna Uttam; Chebrolu Pulla Rao, Calixarene-Assisted Pd Nanoparticles in Organic Transformations:Synthesis, Characterization, and Catalytic Applications in Water for C−C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS Omega 2019, 4(3), 4908-4917
86. Ding, J.; Li, Q.; Zhao, L.; Li, X.; Yue, Q.; Gao, B., A wheat straw cellulose based semi-IPN hydrogel reactor for metal nanoparticles preparation and catalytic reduction of 4-nitrophenol. RSC adv.2017, 7(29), 17599-17611.
87.Haiqing Li;Lina Han;Justin Cooper-White;Il Kim, Palladium nanoparticles decorated carbon nanotubes: facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol.Green Chem 2012, 14, 586.
88. Gu, X.; Qi, W.; Xu, X.;Sun, Z.; Zhang, L.; Liu, W.; Pan, X.; Su, D., Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014, 6(12), 6609-6616..

89. Bingwa, N.; Meijboom, R., Kinetic evaluation of dendrimer-encapsulated palladium nanoparticles in the 4-nitrophenol reduction reaction. J.Phys.Chem.C 2014,118(34), 19849-19858.
90. Ruiz-Garcia, C., Heras, F., Calvo, L., Alonso-Morales, N., Rodriguez, J. J., & Gilarranz, M. A., N-doped CMK-3 carbons supporting palladium nanoparticles as catalysts for hydrodechlorination. Industrial & Engineering Chemistry Research 2019,58(11), 4355-4363.
91. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources. 2013, 243, 431-435.
92. Chatterjee, S., & Bhattacharya, S. K., Size-Dependent Catalytic Activity and Fate of Palladium Nanoparticles in Suzuki–Miyaura Coupling Reactions. ACS omega 2018, 3(10), 12905-12913.
93. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Adv.2016,6(42), 35167-35176.
94. Ai, L.; Jiang, J., Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresource technol. 2013, 132, 374-377
95. Sebastián, D., Nieto-Monge, M. J., Pérez-Rodríguez, S., Pastor, E., & Lázaro, M. J., Nitrogen doped ordered mesoporous carbon as support of PtRu nanoparticles for methanol electro-oxidation. Energies 2018, 11(4), 831.

96. Nilesh Narkhede; Bhawna Uttam; Chebrolu Pulla Rao, Calixarene-Assisted Pd Nanoparticles in Organic Transformations: Synthesis, Characterization, and Catalytic Applications in Water for C−C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS Omega 2019, 4, 4908−4917
97. Sujit Chatterjee; Swapan Kumar Bhattacharya, Size-Dependent Catalytic Activity and Fate of Palladium Nanoparticles in Suzuki−Miyaura Coupling Reactions. ACS Omega 2018, 3, 12905−12913
98. Vitthal B. Saptal; Madhuri V. Saptal; Rajendra S. Mane; Takehiko Sasaki; Bhalchandra M. Bhanage, Amine-Functionalized Graphene Oxide-Stabilized Pd Nanoparticles (Pd@APGO): A Novel and Efficient Catalyst for the Suzuki and Carbonylative Suzuki−Miyaura Coupling Reactions. ACS Omega 2019, 4, 643−649
99. Etty N. Kusumawati a; Takehiko Sasaki, Highly active and stable supported Pd catalysts on ionic liquidfunctionalized SBA-15 for Suzuki–Miyaura cross-coupling and transfer hydrogenation reactions. Green Energy and Environment 2019, 4(2), 180-189
100. Zuhui Zhang; Zhiyong Wang, Diatomite-Supported Pd Nanoparticles: An Efficient Catalyst for Heck and Suzuki Reactions. J. Org. Chem. 2006, 71(9), 7485-7487
101. Michael Pittelkow; Kasper Moth-Poulsen; Ulrik Boas; Jørn B. Christensen, Poly(amidoamine)-Dendrimer-Stabilized Pd(0) Nanoparticles as a Catalyst for the Suzuki Reaction. Langmuir 2003, 19, 7682-7684

102. Harish, S.; Mathiyarasu, J.; Phani, K.; Yegnaraman, V., Synthesisof conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal.Lett. 2009, 128(1-2), 197.
103. Gu, X.; Qi, W.; Xu, X.;Sun, Z.; Zhang, L.; Liu, W.; Pan, X.; Su, D., Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014,6(12), 6609-6616.
104. Wang, Z.; Xu, C.; Gao, G.; Li, X., Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. Rsc Adv. 2014, 4(26), 13644-13651
105. Gregor, L., Reilly, A. K., Dickstein, T. A., Mazhar, S., Bram, S., Morgan, D. G., ... & Bronstein, L. M. Facile Synthesis of Magnetically Recoverable Pd and Ru Catalysts for 4-Nitrophenol Reduction: Identifying Key Factors. ACS omega 2018, 3(11), 14717-14725.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明