博碩士論文 107223050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.222.117.109
姓名 黃品嘉(Pin-Chia Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新型三吡啶鋨錯合物染料 合成與配位基效應之探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在染料敏化太陽能電池(Dye-sensitized solar cells,DSCs)的研究中,鋨錯合物的探討極為稀少,但重原子效應(Heavy atom effect)具有可使鋨錯合物更有效地吸收近紅外光光子的優點,有機會藉此拓展其敏化電池元件的響應波長範圍與提高光電流密度。本研究以CYC-33O為基礎,合成兩個新型鋨錯合物染料(CYC-45Cl及CYC-45I),其分子設計是透過在固著配位基的吡啶4號位上以2-Methylthiophene取代原有的羧基,搭配在雙吡啶(bpy)的4、4’位置連接Hexyl-EDOT作為輔助配位基,並在單牙基分別以氯離子與碘離子進行配位,期望藉此剖析與鋨原子同為重原子的碘元素能否進一步提高敏化元件的響應波長範圍。在CYC-45Cl的部分,我們嘗試了三種合成條件,最終發現以正丁醇+乙二醇的條件分別進行固著及輔助配位基的配位,另搭配40當量氫氧化鉀及四氫呋喃進行水解可順利得到最終產物。CYC-45I的合成則是以氫碘酸搭配(NH4)2OsCl6進行碘離子置換,合成出(TBA)2OsI6作為配位反應的起始物,並依循CYC-45Cl的合成條件且延長反應時間(16 h)與升高溫度(至195 oC),再搭配5當量氫氧化鉀及四氫呋喃進行水解反應。CYC-45系列由於固著配位基擁有較高共軛程度,吸收係數及吸收範圍相較CYC-33O都有明顯提高,其中以CYC-45Cl具最高吸收係數(30900 M-1 cm-1,波長548 nm)以及最寬廣吸光波段(onset為941 nm)。對比於CYC-45Cl與CYC-33O, CYC-45I可使元件IPCE具最優異的光子轉換電流效率,Jsc值達11.38 (mA cm-2),且由於CYC-45I移除了CYC-33O輔助配位基的硫原子,進一步降低了電荷再結合的發生,也因此CYC-45I敏化元件的Voc值(531 mV)亦為三者最高,整體效能達4.11%。經初步優化TiO2層數與電解液中的BMII濃度,CYC-45I敏化元件效率可分別提高至4.24%與4.76%,此展現CYC-45I的高應用潛力。
摘要(英) The study of osmium complexes for dye-sensitized solar cells (DSCs) is extremely rare. However, heavy atom effect can endow osmium complexes with efficient absorption capacity at near infrared region, having the opportunity to expand the spectral response for the sensitized cells and to increase the short-circuit current density. In this study, based on CYC-33O, two new osmium complex dyes (coded CYC-45Cl and CYC-45I) were synthesized. The molecular design for improving light-harvesting ability of osmium complexes and exploring the heavy atom effect is substituting 2-methylthiophene at the 4-position of pyridine of the anchoring ligand, attaaching Hexyl-EDOT at the 4,4′ positions of the ancillary bipyridine ligands, and using respectively chloride and iodide as monodentate. For the preparation of CYC-45Cl, three synthesis conditions were tested. It was finally found that the conditions of using n-butanol and ethylene glycol as solvent for coordinating the anchoring and ancillary ligands respectively. 40 eq. of potassium hydroxide and tetrahydrofuran were apprpriate for the hydrolysis. For CYC-45I, (TBA)2OsI6 were preparing by (NH4)2OsCl6 and hydriodic acid were used as the starting material for the coordination, followed by the similar synthesis conditions as those for CYC-45Cl. Practically, the reaction time for CYC-45I was prolonged (16 h) with higher temperature of 195 oC, and then 5 eq. of potassium hydroxide and tetrahydrofuran were used for hydrolysis. Owing to the highly conjugating anchoring ligand, CYC-45 series of osmium complexes display that the absorption coefficient and wavelength range are both superior to those of CYC-33O. Among them, CYC-45Cl shows the highest absorption coefficient (30900 M-1 cm-1) at 548 nm and the broadest absorption band (onset of 941 nm). Compared with CYC-45Cl and CYC-33O, the IPCE spectrum of CYC-45I sensitized device shows the best conversion of photon to current, which attribute to the highest Jsc value of 11.38 mA cm-2. The device based on CYC-45I also provide the highest Voc value of 531 mV and the best power conversion efficiency (PCE) of 4.11%, which should be ascribed to that the removal of sulfur atoms in CYC-33O could reduce charge recombination. After preliminary optimization of device fabrication condition (the number of TiO2 layers and the concentration of BMII in electrolyte), the PCE based on CYC-45I increased to 4.24%, and 4.76%, respectively. These results indicate the high application potential of CYC-45I.
關鍵字(中) ★ 鋨錯合物 關鍵字(英)
論文目次 中文摘要……………………………………………………………….VI
Abstract………………………………………………………………..VII
目錄……………………………………………………………………...X
圖目錄………………………………………………………………...XIII
表目錄…………………………………………………………………XX
附錄目錄……………………………………………………………..XXII
第一章、 緒論 1
1-1前言 1
1-2 太陽光譜與太陽能電池的光伏參數 1
1-3 太陽能電池的發展歷史簡介 5
1-4 染料敏化太陽能電池的工作原理 6
1-5 染料分子設計相關文獻探討 9
1-5-1鋨錯合物的分子結構設計 10
1-5-2鋨錯合物的固著配位基選擇(二牙或三牙) 11
1-5-3輔助配位基對錯合物之影響 19
1-5-4含碘原子單牙配位基之金屬錯合物 31
1-6研究動機 39
第二章、 實驗部分 41
2-1實驗藥品 41
2-2中間產物之結構與簡稱 45
2-3合成流程與實驗 50
2-3-1 Ligand-45-B的合成 50
2-3-2 四號位置取代溴基之三吡啶酯基的合成 54
2-3-3 Ligand-45-Ester的合成 59
2-3-4 鋨錯合物CYC-45Cl之合成 63
2-3-5 鋨錯合物CYC-45I之合成 69
2-4儀器分析與樣品製備 74
2-5元件組裝與光電轉化效率量測 80
2-5-1 染料敏化太陽能電池元件組裝流程 80
2-5-2 染料敏化太陽能電池光電轉換效率量測系統 84
第三章、 結果與討論 87
3-1合成問題探討 87
3-1-1 鋨錯合物CYC-45Cl 合成所遇到問題與解決方法 87
3-1-2 鋨錯合物CYC-45I之合成探討 95
3-2 鋨錯合物染料結構鑑定與光物理性質探討 117
3-2-1 CYC-45Cl與CYC-45I染料結構鑑定 117
3-2-2鋨錯合物光物理性質探討 123
3-3鋨錯合物理論計算結果(分子軌域及吸收光譜) 127
3-4鋨錯合物電化學性質與前沿軌域位能 130
3-5鋨錯合物染料敏化電池元件之性能探討 134
3-6鋨錯合物CYC-45I之元件優化探討 137
3-6-1 CYC-45I敏化元件之優化 – 調整TiO2層數 137
3-6-2 CYC-45I敏化元件之優化 – 電解質成分BMII濃度調整 139
第四章、 結論 141
參考文獻 …………………………………………143
附錄……………………………………………………………………153
參考文獻 [1] (a) M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, "Dye-sensitized solar cells for efficient power generation under ambient lighting" Nat. Photon. 2017, 11, 372–378; (b) C. Y. Chen, T. Y. Kuo, C. W. Huang, Z. H. Jian, P. T. Hsiao, C. L. Wang, J. C. Lin, C. Y. Chen, C. H. Chen, Y. L. Tung, M. C. Tsai, K. M. Huang, C. M. Chen, C. W. Hsu, Y. C. Chen, Z. Pei, Y. S. Tingare, H. H. Chou, C. Y. Yeh, C. Y. Lin, Y. L. Lee, H. W. Lin, H. F. Meng, P. T. Chou and C. G. Wu, "Thermal and angular dependence of next-generation photovoltaics under indoor lighting" Prog. Photovolt. Res. Appl. 2020, 28, 111−121.
[2] (a) "https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html"; (b) "http://www.laserfbcusworld.com/lasers-sources/articles/ 16566681/photovoltaics-measuring-the-sun".
[3] "https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance".
[4] E. Becquerel, "Mémoire sur les effets électriques produits sous l′influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561–567.
[5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells" Chem. Rev. 2015, 115, 2136–2173.
[6] M. A. Green, E. D. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis and X. Hao, "Solar cell efficiency tables (version 59)" Prog. Photovolt. Res. Appl. 2022, 30, 3–12.
[7] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf
[8] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell" Nature 1976, 261, 402–403.
[9] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737–740.
[10] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, "Counter electrodes in dye-sensitized solar cells" Chem. Soc. Rev. 2017, 46, 5975–6023.
[11] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells" Chem. Rev. 2010, 110, 6595–6663.
[12] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894–15897.
[13] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano, 2009, 3, 3103–3109.
[14] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, "High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states" ACS Nano, 2010, 4, 6032–6038.
[15] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495–3514.
[16] S. I. Yun, Y. Qin, A. R. Uhl, N. Vlachopoulos, M. Yin, D.D. Li, X. G. Han and A. Hagfeldt " New-generation integrated devices based on dye-sensitized and perovskite solar cells", Energy Environ. Sci.,2018, 11, 476−525.
[17] (a) M. K. Nazeeruddin, S. M. Zakeeruddin and K. Kalyanasundaram, " Enhanced Intensities of the Ligand-to-Metal Charge-Transfer Transitions in Ru(III) and Os(III) Complexes of Substituted Bipyridines " J. Phys. Chem. 1993, 97, 9607-9612 . (b) M. E. Kober and T. J. Meyer, " An electronic structural model for the emitting MLCT excited states of Ru(bpy)32+ and Os(bpy)32+ " Inorg. Chem. 1984, 23, 4587−4598.
[18] M. E. Kober, T. J. Meyer, J. V. Casper and B. P. Sullivan, "Synthetic routes to new polypyridyl complexes of osmium(II)" Inorg. Chem. 1988, 27, 4587–4598.
[19] G. Sauve, M. E. Cass, g. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal and N. S. Lewis, "Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes" J. Phys. Chem. B, 2000, 104, 6821–6836.
[20] R. Argazzi, G. Larramona, C. Contado and C. A. Bignozzi, "Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4’,4’’-tricarboxy2,2’:6’,2’’-terpyridine and cyanide ligands" J. Photochem. Photobiol. A Chemistry, 2004, 164, 15–21.
[21] A. Anthonysamy, S. Balasubramanian, B. Muthuraaman and P. Maruthamuthu, "4 -functionalized 2,2’:6’,2’’ terpyridine ruthenium (II) complex: A nanocrystalline TiO2 based solar cell sensitizer" Nanotechnology, 2007, 18, 095701.
[22] M. Kimura, J. Masuo, Y. Tohata, K. Obuchi, N. Masaki, T. N. Murakami, N. Koumura, K. Hara, A. Fukui, R. Yamanaka and S. Mori, "Improvement of TiO2/dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes" Chem. Eur. J. 2013, 19, 1028–1034.
[23] Y. Numata, S. P. Singh, A. Islam, M. Iwamura, A. Imai, K. Nozaki and L. Han, "Enhanced light-harvesting capability of a panchromatic Ru (II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cells" Adv. Funct. Mater. 2013, 23, 1817–1823.
[24] G. Koyyada, V. Botla, S. Thogiti, G. H. Wu, J. Z. Li, X. Q. Fang, F. T. Kong, S. Y. Dai, N. Surukonti, B. Kotamarthia and C. Malapaka, "Novel 4’-functionalized 4,4’’-dicarboxyterpyridine ligands for ruthenium complexes: near-IR sensitization in dye sensitized solar cells" Dalton Trans. 2014, 43, 14992–15003.
[25] S. S. M. Fernandes, M. Belsley, C. Ciarrocchi, M. Licchelli and M. M. M. Raposo, "Terpyridine derivatives functionalized with (hetero)aromatic groups and the corresponding Ru complexes: synthesis and characterization as SHG chromophores" j. dyepigm, 2017, 150, 49–58.
[26] 劉毓琪,2018,國立中央大學化學研究所碩士學位論文(應用於染料敏化太陽能電池之釕金屬錯合物合成與性質探討)。
[27] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 8270–8274.
[28] H. W. Lin, Y.-S. Wang, Z. Y. Huang, Y. M. Lin, C. W. Chen, S. H. Yang, K. L. Wu, Y. Chi, S. H. Liu and P. T. Chou, "Origins of device performance in dicarboxyterpyridine Ru (II) dye-sensitized solar cells" Phys. Chem. Chem. Phys. 2012, 14, 14190–14950.
[29] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance" Eur. J. Inorg. Chem. 2014, 2014, 4734–4739.
[30] C.Y. Chen, Y. Y. Fen, T. Y. Wu, Y. C. Liu, S. Y. Chen, T. Y. Lin, H. S. Tsai and C. G. Wu, "Terpyridyl ruthenium complexes functionalized with conjugated heterocycles for panchromatic dye-sensitized solar cells" ACS Appl. Energy Mater. 2021, 4, 13461−13470.
[31] C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells", Angew. Chem., 2011, 123, 2102−2106.
[32] K. L. Wu, S. T. Ho, C. C. Chou, Y. C. Chou, H. A. Pan, Y. Chi and P. T. Chou, "Engineering of osmium(II)-based light absorbers for dye-sensitized solar cells " Angew. Chem. Int. Ed., 2012, 51, 5642−5646.
[33] F. C. Hu, S. W. Wang, M. Planells, N. Robertson, H. Padhy, B. Du, Y. Chi, P. F. Yang, H. W. Lin, G. H. Lee and P. T. Chou, “Design of OsII-based sensitizers for dye-sensitized solar cells: Influence of heterocyclic ancillaries” ChemSusChem, 2013, 6, 1366−1375.
[34] B. C. O’Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. Klein and J. R. Durrant, "Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage" J. Am. Chem. Soc. 2009, 131, 3541–3548.
[35] T. Kinoshita, J. I. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, "Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition" J. Phys. Chem. Lett. 2012, 3, 394−398.
[36] R. Juwita, J. Y. Lin, Y. C. Liu, T. Y. Wu, Y. M. Feng, C. Y. Chen, H. H. Tsai and C. G. Wu, "Osmium sensitizer with enhanced spin–orbit coupling for panchromatic dye-sensitized solar cells" J. Mater. Chem. A, 2020, 8, 12361–12369.
[37] M. K. Nazeeruddin, E. Baranoff and M. Grätzel, "Dye-sensitized solar cells: A brief overview" Solar Energy, 2011, 85, 1172–1178.
[38] J. F. Yin, M. Velayudham, D. Bhattacharya, H. C. Lin and K. L. Lu, "Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells – A goal toward a “bright” future" COORD. Chem. Rev. 2012, 256, 3008–3035.
[39] O. Kohle, S. Ruile and M. Grätzel, "Ruthenium(II) charge-transfer sensitizers containing 4,4’-dicarboxy-2,2’-bipyridine. synthesis, properties, and bonding mode of coordinated thio- and seleno-cyanates" Inorg. Chem. 1996, 35, 4779−4787.
[40] S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. Da Fre, P. Rubino, C. Chone, G. Larramona and C. A. Bignozzi, " Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes" J. Am. Chem. Soc. 2005, 127, 15342–15343.
[41] Y. L. Chen, S. W. Lee, Y. Chi, K. C. Hwang, S. B. Kumar, Y. H. Hu, Y. M. Cheng, P. T. Chou, S. M. Peng, G. H. Lee, S. J. Yeh and C. T. Chen, "Synthesis, characterization, and photophysical properties of Os(II) diimine complexes [Os(N^N)(CO)2I2] (N^N = bipyridine, phenanthroline, and pyridyl benzoxazole)" Inorg. Chem. 2005, 44, 4287−4294.
[42] Y. L. Chen, C. Sinha, I. C. Chen, K. L. Liu, Y. Chi, J. K. Yu, P. T. Chou and T. H. Lu, "Synthesis and characterization of luminescent osmium(II) carbonyl complexes based on chelating dibenzoyl-methanate and halide ligands" Chem. Commun. 2003, 3046–3047.
[43] B. D. Rossenaar, D. J. Stufkens and A. Vlček Jr, "Halide-dependent change of the lowest-excited-state character from MLCT to XLCT for the complexes Re(X)(CO)3(a-diimine) (X = Cl, Br, I; a-diimine = bpy, iPr-PyCa, iPr-DAB) studied by resonance Raman, time-resolved absorption, and emission spectroscopy " Inorg. Chem. 1996, 35, 2902−2909.
[44] M. Jakonen, P. Hirva, M. Haukka, S. Chardon-Noblat, F. Lafolet, J. Chauvin and A. Deronzier," An alternative synthesis method for [Os(NN)(CO)2X2] complexes (NN = 2,2’-bipyridine, 4,4’ -dimethyl-2,2’-bipyridine; X = Cl, Br, I). Electrochemical and photochemical properties and behavior" Dalton Trans. 2007, 3314–3324.
[45] Y. Fu, A. Habtemariam, A. M. Pizarro, S. H. van Rijt, D. J. Healey, P. A. Cooper, S. D. Shnyder, G. J. Clarkson and P. J. Sadler, "Organometallic osmium arene complexes with potent cancer cell cytotoxicity" J. Med. Chem. 2010, 53, 8192–8196.
[46] S. D. Shnyder, Y. Fu, A. Habtemariam, S. H. van Rijt, P. A. Cooper, P. M. Loadmana and P. J. Sadler, "Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex" Med. Chem. Commun. 2011, 2, 666–668.
[47] J. P. C. Coverdale, C. S. Guy, H. E. Bridgewater, R. J. Needham, E. Fullam and P. J. Sadler, "Osmium–arene complexes with high potency towards Mycobacterium tuberculosis" Metallomics 2021, 13, 1–8.
[48] A. C. Onicha, 2010, Submitted to the graduate college of bowling green state university in partial fulfillment of the requirements for the degree of doctor of philosophy, Heteroleptic osmium(II) polypyridine complexes and carbazole-based chromophores as sensitizers in dye-sensitized solar cells.
[49] T. Fiedler, 2011, The Faculty of Natural Sciences at the Friedrich-Alexander University of Erlangen-Nuremberg to obtain the doctoral degree. Syntheses of gyroscope-like osmium complexes and cage-like diphosphines.
[50] 周俊誠,2014,國立清華大學化學研究所博士學位論文(二價釕、鋨金屬光敏染料合成及其在染敏太陽能電池上的應用)。
[51] G. Wolfbauer, A. M. Bond and D. R. MacFarlane, " Electrochemical and spectroscopic studies on the oxidation of the cis-(Et2-dcbpy)2RuX2 series of photovoltaic sensitizer precursor complexes (Et2-dcbpy) 2,2-bipyridine-4,4-diethoxydicarboxylic acid, X = Cl-, I-, NCS-, CN-)" Inorg. Chem. 1999, 38, 3836–3846.
[52] T. Katoh , Y. Ogawa, Y. Ohta and T. Yokozawa, "Synthesis of polyester by means of polycondensation of diolester and dicarboxylic acid ester through ester–esterexchange reaction" J. Polym. Sci. 2021, 59, 787–797.
[53] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. J. Thomas, J. T. Lin and Chao-Ping Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells" Chem. Eur. J. 2010, 16, 3184 – 3193.
[54] V. V. Pavlishchuk, A. W. Addison, "Conversion constants for redox potentials measured versusdifferent reference electrodes in acetonitrile solutions at 25°C" Inorganica Chim. Acta, 2000, 298, 97–102.
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明