博碩士論文 107226030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.135.202.224
姓名 劉子凡(Tzu-Fan Liu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 電漿輔助原子層沉積法鍍製抗反射膜於微型塑膠透鏡
(Plasma Enhanced Atomic Layer Deposition of Antireflection coatings on Micro plastic lens)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 近年來半導體產業的快速發展對線寬的要求越來越小,原子層沉積
技術因具有極佳的均勻性和保形性,隨即快速發展,應用領域也越來
越廣泛。
在光學方面的應用,隨著光學設計架構越來越複雜,出現了越來越
多的自由曲面或是微結構的透鏡,來取代光學元件的件數,而這些微
結構的光學元件在製造時使用成本較低的塑膠(如 PMMA、PC、Zeonex)
替代玻璃。
本實驗使用電漿輔助原子層沉積法鍍製,探討了單層膜在 60℃製程
下折射率與消光係數在不同功率和時間下的趨勢,也分析前驅物在
60℃製程下的反應性,並使用 X 射線光電子能譜儀分析薄膜中殘留的
碳、氮比例,推測其雜質是否影響光學性質。將不同參數的抗反射膜
鍍製於塑膠基板上測試其附著性與是否膜裂,最後鍍製於微型塑膠透
鏡上,並使用顯微鏡光譜儀量測透鏡各點在波段 420nm 到 680nm 抗反
射光譜圖及均勻性,平均反射率約為 0.78%。
摘要(英) In recent years, due to the rapid development of the semiconductor
industry, the requirements for line width have become lesser. Atomic Layer
Deposition technology developed rapidly because of its excellent
uniformity and shape retention.
In optical applications, as the optical design structure becomes more
complex, more Freeform surface or structured lenses have appeared to
replace of optical components. In order to reduce costs during
manufacturing, plastic substrates (such as PMMA, PC, Zeonex) are used
instead of glass.
In this experiment, plasma-enhanced atomic layer deposition method
was used. The trend of refractive index and extinction coefficient of
single-layer film under 60℃ process with different power and process time
was discussed. The reactivity of the precursors at 60℃ was also analyzed.
The use of XPS to analyze the residual carbon and nitrogen ratio in the
film to infer whether its impurities affect the optical properties. The
anti-reflection (AR) coating with different parameters is deposited on the
plastic substrates to test its adhesion and film cracking.
Finally, the AR film coated on the micro plastic lens is used to
measure the anti-reflection spectrum and uniformity of each point of the
lens in the wavelength range of 420 nm to 680 nm with an optical
microscope spectrometer. The average reflectance is about 0.78%.
關鍵字(中) ★ 電漿輔助原子沉積
★ 抗反射膜
關鍵字(英) ★ Plasma Enhanced Atomic Layer Deposition
★ Antireflection coating
論文目次 目錄
摘要................................................i
Abstract...........................................ii
致謝................................................iii
目錄................................................iv
圖目錄..............................................vii
表目錄............................................. X
第一章 緒論........................................ 1
1-1 前言.......................................... 1
1-2 研究目的與動機................................. 5
1-3 本文架構...................................... 6
第二章 基礎理論與文獻回顧........................... 7
2-1 原子層沉積技術工作原理 ......................... 7
2-1-1 化學氣相沉積法 .............................. 7
2-1-2 原子層沉積 ................................. 8
2-1-3 電漿輔助原子沉積系統(Plasma Enhanced ALD).... 14
2-2 光學薄膜理論.................................. 19
2-2-1 光學導納(Optical admittance)............... 21
2-2-2 多層抗反射膜設計 ........................... 22
2-3 塑膠鍍膜之問題................................ 23
2-4 文獻探討...................................... 26
第三章 實驗方法與使用儀器設備....................... 32
3-1 實驗方法...................................... 32
3-1-1 實驗流程 ................................... 32
3-1-2 實驗步驟 ................................... 33
3-2 製程設備原理與條件 ............................ 36
3-2-1 原子層沉積系統 .............................. 36
3-3 量測儀器介紹與原理 ............................ 41
3-3-1 紫外光/可見光/近紅外光光譜儀.................. 41
3-3-2 橢圓偏振儀 ................................. 43
3-3-3 掃描式電子顯微鏡 ............................ 45
3-3-4 X 射線光電子能譜儀 .......................... 45
3-3-5 光學顯微鏡光譜儀 ............................ 48
第四章 實驗結果與討論.............................. 49
4-1 不同材料之單層膜實驗........................... 49
4-1-1 單層膜之材料選擇 ............................ 49
4-1-2 單層膜之光學特性分析.......................... 50
4-1-3 雜質對光學特性的影響.......................... 57
4-2 多層抗反射膜結果 ............................... 61
4-2-1 塑膠基板的附著性與膜裂......................... 61
4-2-2 光學特性與均勻性 ............................. 67
第五章 結論........................................ 70
參考文獻........................................... 71
參考文獻 [1] 2018/2019 年產業技術白皮書,環境篇,經濟部技術處,2018.
[2] 2018/2019 年產業技術白皮書,產業篇,經濟部技術處,2018.
[3] Edmund Optics:微透鏡陣列
取自:https://www.edmundoptics.com.tw/f/Microlens-Arrays/13812/
[4] B. Aitchison, M.l J. Cumbo, Optical Design and Fabrication (Freeform,
IODC, OFT), FTh3B.5, Denver, Colorado United States, 9–13 July
2017.
[5] 李正中, 薄膜光學與鍍膜技術, 第八版藝軒圖書, 2016
[6] I. Iatsunskyi, M. Kempinski, M. Jancelewicz, K. Załeski, S. Jurga, V.
Smyntyna, Vacuum ,113, 52-58, 2015.
[7] H. Song , L. Guo , Z. Liu , K. Liu , X. Zeng , D. Ji , N. Zhang , H.g Hu ,
S. Jiang , and Q. Gan, Adv. Mater., 26, 2737–2743, 2014.
[8] Y. J. Choia, S. C. Gonga, D. C. Johnson, S. Golledge, G. Y. Yeomc, H.
H. Parka, Applied Surface Science, 269, 92– 97, 2013.
[9] M. Crne, V. Sharma, J. Blair, J. O. Park, C. J. Summers and
M.Srinivasarao, EPL, 93, 14001, 2011.
[10] S. Seppälä, “Atomic Layer Deposition of Zirconium Oxide and
Rare Earth Oxides from Heteroleptic Precursors” ,2019.
[11] F. Hirose, Y. Kinoshita, K. Kanomata, K. Momiyama, S. Kubota, K.
Hirahara, et al., “IR study of fundamental chemical reactions in
atomic layer deposition of HfO2 with tetrakis (ethylmethylamino)
hafnium (TEMAH), ozone, and water vapor ” Applied Surface
Science, vol. 258, pp. 7726-7731, 2012
72
[12] 陳建維,等“應用於原子層沉積之臨場量測技術, ” 科儀新知, pp.
47-57, 2017.
[13] I. Langmuir, “Oscillations in ionized gases, ” Proceedings of the
National Academy of Sciences of the United States of America, vol.
14, p. 627, 1928.
[14] http://140.117.153.69/ctdr/files/573_1151.pdf
[15] P. Schindler, M. Logar, J. Provine, and F. B. Prinz, “Enhanced step
coverage of TiO2 deposited on high aspect ratio surfaces by
plasma-enhanced atomic layer deposition,” Langmuir, vol. 31, pp.
5057-5062, 2015
[16] S. Heil, J. Van Hemmen, C. Hodson, N. Singh, J. Klootwijk, F.
Roozeboom, et al., “Deposition of TiN and Hf O 2 in a commercial
200 mm remote plasma atomic layer deposition reactor, ” Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.
25, pp. 1357-1366, 2007.
[17] H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels,
“Plasma-assisted atomic layer deposition: basics, opportunities, and
challenges, ” Journal of Vacuum Science & Technology A: Vacuum,
Surfaces, and Films, vol. 29, p. 050801, 2011
[18] CM CHEN, POLYMER surface modification and characterization
Hanser Pub 1993
[19] P. Munzert, U. Schulz and N. Kaiser, Plasma Proc. Polym. 4, 1036,
2007.
[20] J. E. Klemberg‐ Sapieha, L. Martinu, N. L. S. Yamasaki, C. W.
Lantman, Thin Solid Films 476, 101,2005.
73
[21] Wilson CA, Grubbs RK, George SM. Chem Mater 17:5625–34,2005.
[22] Ferguson JD, Weimer AW, George SM. Chem Mater ,16:5509–602,
2004.
[23] M. Kemell, E. Färm, M. Ritala, and M. Leskelä, “Surface
modification of thermoplastics by atomic layer deposition of Al2O3
and TiO2 thin films, ” European polymer journal, vol. 44, pp.
3564-3570, 2008
[24] T. O. Kääriäinen, D. C. Cameron, and M. Tanttari, “Adhesion of Ti
and TiC coatings on PMMA subject to plasma treatment: effect of
intermediate layers of Al2O3 and TiO2 deposited by atomic layer
deposition, ” Plasma Processes and Polymers, vol. 6, pp. 631-641,
2009
[25] V. Teixeira, “Mechanical integrity in PVD coatings due to the
presence of residual stresses, ” Thin solid films, vol. 392, pp. 276-281,
2001.
[26] G. N. Strauss, N. Q. Danh, and H. Pulker, “Mechanical stress in thin
SiO2 and Ta2O5 films produced by reactive-low-voltage-ion-plating
(RLVIP), ” Journal of non-crystalline solids, vol. 218, pp. 256-261,
1997.
[27] U. Schulz, “Review of modern techniques to generate antireflective
properties on thermoplastic polymers, ” Applied optics, vol. 45, pp.
1608-1618, 2006.
[28] J. Strong, “On a method of decreasing the reflection from nonmetallic
substances, ” JOSA, vol. 26, pp. 73-74, 1936.
[29] K. Pfeiffer, U. Schulz, A. Tünnermann, and A. Szeghalmi,
“Antireflection coatings for strongly curved glass lenses by atomic
74
layer deposition, ” Coatings, vol. 7, p. 118, 2017.
[30] S. Ratzsch, E.-B. Kley, A. Tünnermann, and A. Szeghalmi,
“Influence of the oxygen plasma parameters on the atomic layer
deposition of titanium dioxide, ” Nanotechnology, vol. 26, p. 024003,
2014.
[31] O. M. Ylivaara, L. Kilpi, X. Liu, S. Sintonen, S. Ali, M. Laitinen, et
al., “Aluminum oxide/titanium dioxide nanolaminates grown by
atomic layer deposition: Growth and mechanical properties, ” Journal
of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,
vol. 35, p. 01B105, 2017.
[32] P. Paul, K. Pfeiffer, and A. Szeghalmi, “Antireflection Coating on
PMMA Substrates by Atomic Layer Deposition, ” Coatings, vol. 10,
p. 64, 2020.
[33] K. Pfeiffer, L. Ghazaryan, U. Schulz, and A. Szeghalmi,
“Wide-angle broadband antireflection coatings prepared by atomic
layer deposition, ” ACS applied materials & interfaces, vol. 11, pp.
21887-21894, 2019.
[34] U. Schulz, P. Munzert, and N. Kaiser, “Surface modification of
PMMA by DC glow discharge and microwave plasma treatment for
the improvement of coating adhesion, ” Surface and Coatings
Technology, vol. 142, pp. 507-511, 2001.
[35] P. Munzert, U. Schulz, and N. Kaiser, “Method for the vacuum
deposition of optical coatings on polymethyl methacrylate, ” Plasma
Processes and Polymers, vol. 4, pp. S1036-S1040, 2007.
[36] Q.-Y. Cai, L.-S. Gao, H.-H. Luo, R. Cong, and D.-Q. Liu, “UV
Broadband Antireflection Coating Using Al2O3, HfO2 and SiO2
75
Multilayer by Atomic Layer Deposition, ” in Optical Interference
Coatings, 2019, p. FB. 5.
[37] S. K. Gurram, Atomic Layer Deposition of Zinc Based Transparent
Conductive Oxides: BoD–Books on Demand, 2017
[38]X-ray photoelectron spectroscopy. Available:
https://zh.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[39] S. A. Rushworth, L. Smith, A. J. Kingsley, R. Odedra, R. Nickson,
and P. Hughes, “Vapour pressure measurement of low volatility
precursors, ” Microelectronics Reliability, vol. 45, pp. 1000-1002,
2005.
[40] W. Maeng and H. Kim, “Thermal and plasma-enhanced ALD of Ta
and Ti oxide thin films from alkylamide precursors, ”
Electrochemical and Solid State Letters, vol. 9, p. G191, 2006.
[41] Q. Xie, Y.-L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van
Meirhaeghe, G.-P. Ru, et al., “Atomic layer deposition of Ti O 2
from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors
and H 2 O, ” Journal of applied physics, vol. 102, p. 083521, 2007.
[42] J. Elam, C. Nelson, R. Grubbs, and S. George, “Nucleation and
growth during tungsten atomic layer deposition on SiO2 surfaces, ”
Thin Solid Films, vol. 386, pp. 41-52, 2001.
[43] H. S. Kim, H. J. Kim, H. S. Kim, Y. K. Jeong, S. H. Kim, S. W. Lee,
et al., “Improvement of Luminescent Properties of Phosphor
Powders coated with nanoscaled SiO2 by Atomic Layer Deposition, ”
in Solid State Phenomena, pp. 375-378,2007.
[44] K. Endo, Y. Ishikawa, T. Matsukawa, Y. Liu, K. Sakamoto, J. Tsukada,
et al., “Atomic layer deposition of SiO2 for the performance
76
enhancement of fin field effect transistors, ” Japanese Journal of
Applied Physics, vol. 52, p. 116503, 2013.
[45] B. Burton, S. Kang, S. Rhee, and S. George, “SiO2 atomic layer
deposition using tris (dimethylamino) silane and hydrogen peroxide
studied by in situ transmission FTIR spectroscopy, ” The Journal of
Physical Chemistry C, vol. 113, pp. 8249-8257, 2009.
[46] M.-J. Choi, H.-H. Park, D. S. Jeong, J. H. Kim, J.-S. Kim, and S. K.
Kim, “Atomic layer deposition of HfO2 thin films using H2O2 as
oxidant, ” Applied surface science, vol. 301, pp. 451-455, 2014.
[47] J. C. Hackley and T. Gougousi, “Properties of atomic layer deposited
HfO2 thin films, ” Thin Solid Films, vol. 517, pp. 6576-6583, 2009.
[48] L. Nyns, A. Delabie, J. Swerts, S. Van Elshocht, and S. De Gendt,
“ALD and parasitic growth characteristics of the
tetrakisethylmethylamino hafnium (TEMAH)/H2O process, ” Journal
of The Electrochemical Society, vol. 157, p. G225, 2010.
[49] L. Han and Z. Chen, “High-quality thin SiO2 films grown by atomic
layer deposition using tris (dimethylamino) silane (TDMAS) and
ozone, ” ECS Journal of Solid State Science and Technology, vol. 2,
p. N228, 2013.
[50] Y. Wei, Q. Xu, Z. Wang, Z. Liu, F. Pan, Q. Zhang, et al., “Growth
properties and optical properties for HfO2 thin films deposited by
atomic layer deposition, ” Journal of Alloys and Compounds , vol.
735, pp. 1422-1426, 2018.
指導教授 郭倩丞 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明