博碩士論文 107226044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.216.47.169
姓名 陳奕傑(I-Chieh Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 室內照明情境下之靜態工作專注力評估
(Evaluation of Static Work Attention Under Indoor Lighting Environments)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 在21世紀初照明實質影響生理回饋的研究被提出後,注重燈具色溫、光譜演色性的議題便大量浮上檯面,因此,探討不同照明因子對使用者生
理與精神狀況的影響成為人因工程中相當重要的一部份。本研究係以辦公室環境為實驗空間,以可調變的平板燈營造均勻且可自由控制的照明情境。實驗以招募受試者進行模擬辦公工作的靜態文書作業為主,作業內容與問卷評估等流程沿用先前團隊人員所設計之成果,惟生理因素的客觀評估工具本研究新增了生理回饋儀來進行腦波量測,結合既有之工具設計新的人因評估流程以及各項評估指標。
實驗主要利用生理回饋儀、LED 可調式平板燈、閃光融合儀、評估問卷等工具。生理回饋儀負責量測受試者於平板燈調控情境下的腦波訊號,匯入Matlab 軟體進行包含經驗模態分解法(Empirical mode decomposition, EMD)、傅立葉轉換(Fourier transform, FT) 及希爾伯特-黃轉換(Hilbert-Huang transform, HHT)、機率密度函數(Probability density function, PDF)、接收者操作特徵曲線(Receiver operating characteristic curve, ROC curve) 等運算,最後則將接收者操作特徵曲線的曲線下面積(Area under the curve, AUC) 依情境排列作為客觀指標;以問卷評估所得之評分,亦依情境排列後成為主觀指標。主客觀指標將分別匯入SPSS 軟體進行變異數分析,檢視指標於12 種情境間是否具顯著差異,以進一步探討主客觀指標的情境分布狀況。實驗結果在客觀指標方面,受試者在高色溫低照度時較高;主觀指標方面,受試者評分則較青睞高色溫高照度。但在視覺舒適度的評估上,客觀結果與主觀結果則可相呼應,以3840 K 和750 lux 的照明情境下為最佳。
摘要(英) After the proposal of the study of how lighting influencing humans’ biofeedback at the beginning of 21th century, topics about color temperature, power spectral
density, or color rendering are becoming more and more popular. Therefore, research on how lighting factors affecting users’ physiological situations is absolutely
an important part in human-factor engineering. This study takes the office environment as the experimental area. Several controllable and uniform lighting setups are designed by using the LED flat panel lights. The experiments recruit participants and request them to complete some documental works and questionnaires, which are referenced from the results before. The objective tool added in this study is the biofeedback device, which could measure human electroencephalography (EEG). The new experimental flow is based on the combination of EEG measurement and other evaluation indices. The experimental materials include the biofeedback device, the controllable
flat panel lights, the critical flicker fusion frequency (CFF) instrument, and the self-evaluation questionnaires. The biofeedback device could measure the users’ EEG signals. Then the signals are collected into Matlab and going through empirical mode decomposition (EMD), Fourier transform (FT), Hilbert-Huang transform (HHT), probability density function (PDF), and receiver operating characteristic curve (ROC curve) analysis. The area under curves (AUCs) are calculated and arranged to become the objective indices. On the other hand, the scores of the
questionnaires are also arranged in order of the lighting environments, and then become the subjective indices. Both of them are collected into SPSS for the twoway analysis of variance (ANOVA) to check if there is any significance among the 12 lighting environments. Results show that in the objective part, the area under curves have great performance in higher color temperature and lower illuminance. According to the subjective indices, participants prefer both higher color temperature and illuminance. Yet according to the evaluation of visual comfort, both the objective and subjective measures have the best result in the lighting environment of 3840 K and 750 lux.
關鍵字(中) ★ 照明
★ 腦電圖
★ 經驗模態分解法
★ 邊際頻譜
★ 頻帶功率
★ 機率密度函數
★ 接收者操作特徵曲線
關鍵字(英) ★ lighting
★ EEG
★ empirical mode decomposition (EMD)
★ marginal spectrum
★ band power
★ probability density function (PDF)
★ ROC curve
論文目次 中文摘要............................................................................................................. i
Abstract ............................................................................................................... iii
致謝..................................................................................................................... v
目錄..................................................................................................................... vii
圖目錄................................................................................................................. xi
表目錄................................................................................................................. xvi
一、緒論............................................................................................. 1
1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 研究假設. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 研究限制. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 研究方法與步驟. . . . . . . . . . . . . . . . . . . . . . . 4
二、文獻探討..................................................................................... 6
2.1 照明對於生理之影響. . . . . . . . . . . . . . . . . . . . 6
2.1.1 非視覺系統. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 視覺疲勞判別. . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 疲勞之主觀評估. . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 閃光融合閾值. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 生理回饋與腦波. . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 腦電圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 腦電位量測. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 腦波資訊分析. . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) . . . . 27
2.4.1 經驗模態分解法(Empirical Mode Decomposition, EMD) . 27
2.4.2 希爾伯特轉換(Hilbert transform) . . . . . . . . . . . . . . 31
2.5 心理學實驗設計. . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 拉丁方格設計. . . . . . . . . . . . . . . . . . . . . . . . 34
三、研究方法與步驟......................................................................... 36
3.1 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1 專注力前測實驗. . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 照明實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 照明實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.4 照明實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Anteya DCP-40W-P平板燈. . . . . . . . . . . . . . . . . 39
3.2.2 NeXus-10 MKII生理回饋儀. . . . . . . . . . . . . . . . . 41
3.2.3 閃光融合儀. . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 視力檢查儀. . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 照明實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 實驗環境. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 實驗內容. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 照明實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 照明實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 實驗資料分析. . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.1 移動區塊自體抽樣與經驗模態分解法. . . . . . . . . . . 53
3.6.2 頻帶功率與機率密度函數. . . . . . . . . . . . . . . . . . 55
3.6.3 接收者操作特徵曲線. . . . . . . . . . . . . . . . . . . . 57
3.6.4 重複量數變異數分析. . . . . . . . . . . . . . . . . . . . 59
四、實驗結果與討論......................................................................... 62
4.1 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.1 照明實驗一. . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 照明實驗二. . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 照明實驗三. . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 傅立葉轉換與希爾伯特-黃轉換結果討論. . . . . . . . 84
4.1.5 照明實驗總結. . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.6 主觀問卷評估. . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.7 閃光融合閾值. . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 主客觀結果討論. . . . . . . . . . . . . . . . . . . . . . . 102
五、結論與未來展望......................................................................... 103
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
參考文獻............................................................................................................. 105
附錄一主觀評估問卷內容................................................................................ 110
附錄二中英文閱讀測驗內容範例.................................................................... 112
附錄三臺大研究倫理審查核可證明書............................................................ 113
參考文獻 [1] S. Nakamura, M. Senoh, and T. Mukai. P-GaN/N-InGaN/N-GaN doubleheterostructure
blue-light-emitting diodes. Japanese Journal of Applied
Physics, 32(Part 2, No.1A/B):L8–L11, 1993.
[2] H. R. Taylor et al. The long-term effects of visible light on the eye. Archives
of Ophthalmology, 110(1):99–104, 1992.
[3] K. E. West et al. Blue light from light-emitting diodes elicits a dosedependent
suppression of melatonin in humans. Journal of Applied Physiology,
110(3):619–626, 2011.
[4] G. Tosini, I. Ferguson, and K. Tsubota. Effects of blue light on the circadian
system and eye physiology. Molecular Vision, 22:61–72, 2016.
[5] W. J. M. van Bommel. Non-visual biological effect of lighting and the practical
meaning for lighting for work. Applied Ergonomics, 37(4):461–466,
2006.
[6] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of
visual and biological effects. Lighting Research and Technology, 36(4):255–
266, 2004.
[7] Y. B. Shin et al. The effect on emotions and brain activity by the direct/
indirect lighting in the residential environment. Neuroscience Letters,
584(1):28–32, 2015.
[8] T. Deguchi and M. Sato. The effect of color temperature of lighting
sources on mental activity level. The Annals of Physiological Anthropology,
11(1):37–43, 1992.
[9] 林孟劭. 室內工作與閱讀活動之智慧照明調控研究. 國立中央大學,碩
士論文, 民國105 年.
[10] 許仕勳. 動態照明在辦公環境應用之可行性評估與眼動儀偵測視覺疲
勞之研究. 國立中央大學,碩士論文, 民國104年.
[11] A. F. Jackson and D. J. Bolger. The neurophysiological bases of EEG and
EEG measurement: A review for the rest of us. Psychophysiology, 51, 2014.
[12] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局,
2012.
[13] M. S. Mott et al. Illuminating the effects of dynamic lighting on student
learning. SAGE Open, 2, 2012.
[14] Koninklijke Philips Electronics N.V. Feel good, learn better with SchoolVision,
2011.
[15] I. Hirotake et al. Intellectual productivity under task ambient lighting. Lighting
Research and Technology, 50, 2016.
[16] J. Y. Shin et al. Analysis of the effect on attention and relaxation level by
correlated color temperature and illuminance of LED lighting using EEG
signal. Journal of the Korean Institute of IIIuminating and Electrical Installation
Engineers, 27(5):9–17, 2013.
[17] D. M. Berson, F. A. Dunn, and M. Takao. Phototransduction by retinal ganglion
cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.
[18] D. C. Fernandez et al. Light Affects Mood and Learning through Distinct
Retina-Brain Pathways. Cell, 175(1):71–84.e18, 2018.
[19] P. Khademagha et al. Implementing non-image-forming effects of light in the
built environment: A review on what we need. Building and Environment,
108(1):263–272, 2016.
[20] LumosTech. The science behind adjusting your circadian rhythm with light.
Source: https://reurl.cc/g7qE3b.
[21] C. Lok. Vision science: Seeing without seeing. Nature, 469:284–285, 2011.
[22] J.-H. Chu. CHAPTER1 認識色彩. Source: https://reurl.cc/Wd2Vge.
[23] J. R. Wilson and E. N. Corlett. Evaluation of Human Work, 2nd Edition.
Taylor and Francis, 1995.
[24] D. A. Robinson. The oculomotor control system: A review. Proceedings of
the IEEE, 56(6):1032–1049, 1968.
[25] L. Poppi and A. Brichta. How do our bodies balance themselves? Source:
https://reurl.cc/Nj7Eo6.
[26] Lateral geniculate nucleus. Source: https://reurl.cc/qdl3qg.
[27] Z. X. Zhu and J. M.Wu. On the standardization of VDT’s proper and optimal
contrast range. Ergonomics, 33(7):925–932, 1990.
[28] S. Taptagaporn and S. Saito. How display polarity and lighting conditions
affect the pupil size of VDT operators. Ergonomics, 33(2):201–208, 1990.
[29] 毛義方、徐雅媛. 勞動疲勞測定方法技術與職場疲勞管理指引修正研
究. 行政院勞工委員會勞工安全衛生研究所, 2013.
[30] H. Yoshitake. Relations between the symptoms and the feeling of fatigue.
Ergonomics, 14(1):175–186, 1971.
[31] R. Likert. A technique for the measurement of attitudes. Archives of psychology.
Columbia university, 1932.
[32] M. A. Robinson. Using multi-item psychometric scales for research and
practice in human resource management. Human Resource Management,
57(3):739–750, 2018.
[33] S. W. Davis. Auditory and visual flicker-fusion as measures of fatigue. The
American Journal of Psychology, 68(4):654–657, 1955.
[34] S. Mack et al. Principles of Neural Science, Fifth Edition. Principles of
Neural Science. McGraw-Hill Education, 2013.
[35] Suzana H.-H. The human brain in numbers: a linearly scaled-up primate
brain. Frontiers in Human Neuroscience, 3:31, 2009.
[36] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ.
[37] L. F. Haas. Hans Berger (1873–1941), Richard Caton (1842–1926), and
electroencephalography. Journal of Neurology, Neurosurgery and Psychiatry,
74(1):9–9, 2003.
[38] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note:
Neurofeedback: A comprehensive review on system design, methodology
and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–
158, 2016.
[39] G. Buzs´aki. Rhythms of the Brain. Oxford ; New York : Oxford University
Press, 2006.
[40] B. McDermott et al. Gamma Band Neural Stimulation in Humans and the
Promise of a New Modality to Prevent and Treat Alzheimer’s Disease. Journal
of Alzheimer’s Disease, 65(2):363–392, 2018.
[41] P. Adjamian et al. Induced stimulus-dependent Gamma oscillations in visual
stress. European Journal of Neuroscience, 20:587–592, 2004.
[42] A. Hadjipapas et al. Stimuli of varying spatial scale induce gamma activity
with distinct temporal characteristics in human visual cortex. NeuroImage,
35(2):518–530, 2007.
[43] N. Kort et al. Bihemispheric network dynamics coordinating vocal feedback
control. Human Brain Mapping, 37(4):1474–1485, 2016.
[44] S. Siuly, Y. Li, and Y. C. Zhang. EEG Signal Analysis and Classification:
Techniques and Applications. Springer International Publishing, 2016.
[45] A. B. Usakli. Improvement of EEG signal acquisition: An electrical aspect
for state of the art of front end. Computational Intelligence and Neuroscience,
2010, 2009.
[46] Mind Media B.V. User Manual for the NeXus-10. Schepersweg 2B NL-
6049CV ROERMOND-HERTEN, 2005.
[47] G. H. Klem et al. The ten-twenty electrode system of the International Federation.
The International Federation of Clinical Neurophysiology. Electroencephalography
and clinical neurophysiology. Supplement, 52:3–6, 1999.
[48] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA.
[49] M. Teplan. Fundamental of EEG measurement. Measurement Science Review,
2, 2002.
[50] U. R. Acharya et al. Automated EEG analysis of epilepsy: A review.
Knowledge-Based Systems, 45:147 – 165, 2013.
[51] N. Pradhan and D. N. Dutt. Data compression by linear prediction for storage
and transmission of EEG signals. International Journal of Bio-Medical
Computing, 35(3):207 – 217, 1994.
[52] E. Pereda et al. Non-linear behaviour of human EEG: fractal exponent versus
correlation dimension in awake and sleep stages. Neuroscience Letters,
250(2):91–94, 1998.
[53] S. Osowski et al. Epileptic seizure characterization by Lyapunov exponent
of EEG signal. COMPEL - The international journal for computation
and mathematics in electrical and electronic engineering, 26(5):1276–1287,
2007.
[54] S. J. Geng et al. EEG non-linear feature extraction using correlation dimension
and Hurst exponent. Neurological Research, 33(9):908–912, 2013.
[55] N. Kannathal et al. Entropies for detection of epilepsy in EEG. Computer
Methods and Programs in Biomedicine, 80(3):187–194, 2005.
[56] K. Natarajan et al. Nonlinear analysis of EEG signals at different mental
states. Biomedical engineering online, 3:7, 2004.
[57] N. E. Huang et al. The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 454:903–995, 1998.
[58] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series.
Source: https://reurl.cc/ZO6zo3.
[59] 陳佑榮. 應用希爾伯特黃轉換以C 語言環境開發腦機介面訊號處理. 國
立中央大學,碩士論文, 民國105 年.
[60] A. Kim. Wilhelm Maximilian Wundt. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
2016.
[61] K. A. Carlson. An Introduction to Statistics: An Active Learning Approach.
SAGE Publications, 2016.
[62] C. J. Goodwin. 心理學研究: 方法與設計. 五南圖書出版公司, 2002.
[63] NeuroSky. MindWave Mobile: User Guide, 2015.
[64] MindWave mobile. Source: https://reurl.cc/1x5pWD.
[65] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures?
Source: https://reurl.cc/r88xnr.
[66] MindMedia NeXus-10 MKII. Source: https://reurl.cc/oLaqbD.
[67] 錫昌科技股份有限公司人體研究產品資訊. Source:
https://reurl.cc/D9V8M6.
[68] E. R. Girden. ANOVA: Repeated measures. Sage Publications, 1992.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明