博碩士論文 107226049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.214.184.124
姓名 陳亞凡(Ya-Fan Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 奈米光學類神經網路研究
(Study of Nano-optics Neural Networks)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,我們在晶片上設計了一個全光學的類神經網路架構,用來實現基於延遲的reservoir computing (RC),並從理論上研究其性能表現。此RC系統是被設計成製作在 Silicon-on-Insulator (SOI)晶圓上。依據IMEC-SiPh (iSiPP50G) 矽光子晶片製程規範而設計。晶片上的奈米光學元件包含:耦合器、波導、螺旋波導、馬赫-曾德爾調變器、相位調變器和光柵耦合器。
本研究利用耦合器中光的干涉提供在RC中所需的非線性函數效果。而奈米光學元件和RC系統的性能表現將被評估和優化。
方波和三角波光訊號會被送到此RC系統。當輸入訊號為方波時,RC系統的輸出訊號強度為高準位;當輸入訊號為三角波時,RC系統的輸出訊號強度為低準位。最低NRMSE為0.0864,由模擬結果可看出此RC系統具辨識輸入訊號的能力。
摘要(英) In this study, we design an on-chip all-optical neural networks architecture for a delay-based implementation of reservoir computing (RC) and investigate its performance theoretically. The RC system is designed to be fabricated on a Silicon-on-Insulator (SOI) wafer using the design rules of IMEC-SiPh (iSiPP50G). The nano-optics components used in the chip include directional couplers, waveguides, spiral waveguides, Mach-Zehnder modulator, phase shifters, and grating coupler.
The nonlinear function required in RC is obtained by the interference of the light in the directional couplers. The performance of the nano-optics components and the RC system will be evaluated and optimized.
The rectangular and triangular optical signals are launched into the RC system. The output intensity of the RC system is high and low level as the input signals are rectangular and triangular, respectively. The lowest value of NRMSE is 0.0864. The simulation results show that the RC system can recognize the input signals.
關鍵字(中) ★ 光學類神經網路
★ 矽光子晶片
關鍵字(英) ★ Optical neural network
★ Silicon photonic chip
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究發展 2
1.3 研究目的 5
1.4 結論 6
第二章 基礎理論與模擬方法介紹 7
2.1 回聲狀態網路 7
2.2 本研究之回聲狀態網路架構 10
2.3 歸一化均方根誤差 11
2.4 光束傳播法 12
2.5 有限時域差分法 15
2.6 結論 18
第三章 晶片內部元件設計與結果 19
3.1 設計流程 19
3.2 模擬元件 20
3.2.1 波導 20
3.2.2 耦合器 23
3.2.3 光柵耦合器 26
3.2.4 相位調變器 26
3.2.5 馬赫-曾德爾調變器 27
3.2.6 螺旋波導 29
3.2.7 鍺光偵測器 34
3.2.8 電子濾波器 34
3.3 晶片架構 35
3.4 結論 37
第四章 方波與三角波輸入訊號辨識結果 39
4.1 輸入訊號及耦合器參數設定 39
4.2 訊號辨識結果 40
4.3 系統優化 41
4.4 結論 44
第五章 總論與未來展望 45
5.1 總結 45
5.2 未來展望 46
參考文獻 47
參考文獻 [1] C. Cortes, and V. Vapnik, "Support-Vector Networks," Machine Learning 20, 273-297 (1995).
[2] T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," in European conference on machine learning(Springer1998), pp. 137-142.
[3] H. Drucker, D. Wu, and V. N. Vapnik, "Support Vector Machines for Spam Categorization," IEEE Transactions on Neural Networks 10, 1048-1054 (1999).
[4] D. Decoste, and B. Schölkopf, "Training Invariant Support Vector Machines," Machine Learning 46, 161-190 (2002).
[5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning 46, 389-422 (2002).
[6] G. E. Hinton, and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science 313, 504-507 (2006).
[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet Classification with Deep Convolutional Neural Networks," in Advances in neural information processing systems(2012), pp. 1097-1105.
[8] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, "A Novel Connectionist System for Unconstrained Handwriting Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 855-868 (2008).
[9] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech Recognition with Deep Recurrent Neural Networks," in 2013 IEEE international conference on acoustics, speech and signal processing(IEEE2013), pp. 6645-6649.
[10] H. Jaeger, "The “Echo State” Approach to Analysing and Training Recurrent Neural Networks-with an Erratum Note," Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148, 13 (2001).
[11] H. Jaeger, and H. Haas, "Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication," Science 304, 78-80 (2004).
[12] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, "Information Processing Using a Single Dynamical Node as Complex System," Nature Communications 2, 468 (2011).
[13] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic Information Processing Beyond Turing: An Optoelectronic Implementation of Reservoir Computing," Optics Express 20, 3241-3249 (2012).
[14] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, "Optoelectronic Reservoir Computing," Scientific Reports 2, 287 (2012).
[15] F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, "All-Optical Reservoir Computing," Optics Express 20, 22783-22795 (2012).
[16] F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, "Fully Analogue Photonic Reservoir Computer," Scientific Reports 6, 22381 (2016).
[17] A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J.-L. Oudar, M. Haelterman, and S. Massar, "All-Optical Reservoir Computer Based on Saturation of Absorption," Optics Express 22, 10868-10881 (2014).
[18] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, "Experimental Demonstration of Reservoir Computing on a Silicon Photonics Chip," Nature Communications 5, 3541 (2014).
[19] H. Zhang, X. Feng, B. Li, Y. Wang, K. Cui, F. Liu, W. Dou, and Y. Huang, "Integrated Photonic Reservoir Computing Based on Hierarchical Time-Multiplexing Structure," Optics Express 22, 31356-31370 (2014).
[20] 劉慶權, "人工智慧光學電腦," in 光電科學與工程學系(國立中央大學, 2018), p. 120.
[21] H. Jaeger, Tutorial on Training Recurrent Neural Networks, Covering Bppt, Rtrl, Ekf and the" Echo State Network" Approach (GMD-Forschungszentrum Informationstechnik Bonn, 2002).
[22] M. Lukoševičius, "A Practical Guide to Applying Echo State Networks," in Neural Networks: Tricks of the Trade(Springer, 2012), pp. 659-686.
[23] M. Lukoševičius, and H. Jaeger, "Reservoir Computing Approaches to Recurrent Neural Network Training," Computer Science Review 3, 127-149 (2009).
[24] M. Feit, and J. Fleck, "Light Propagation in Graded-Index Optical Fibers," Applied Optics 17, 3990-3998 (1978).
[25] Beamprop V2018.03 User Guide, Chapter 2 (Rsoft Design Group).
[26] Y. Chung, and N. Dagli, "An Assessment of Finite Difference Beam Propagation Method," IEEE Journal of quantum electronics 26, 1335-1339 (1990).
[27] K. Kawano, and T. Kitoh, "Introduction to Optical Waveguide Analysis," (Wiley Online Library, 2004), pp. 180-203.
[28] K. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell′s Equations in Isotropic Media," IEEE Transactions on Antennas and Propagation 14, 302-307 (1966).
[29] K. Kawano, and T. Kitoh, "Introduction to Optical Waveguide Analysis," (Wiley Online Library, 2004), pp. 233-241.
[30] J.-P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," Journal of Computational Physics 114, 185-200 (1994).
[31] K. T. Grattan, and B. Meggitt, "Optical Fiber Sensor Technology," (Springer, 1998), p. 170.
[32] W.-P. Huang, "Coupled-Mode Theory for Optical Waveguides: An Overview," JOSA A 11, 963-983 (1994).
[33] https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1424_11-14.pdf.
[34] E. Hecht, "Optics (New International Edition—4th Edition)," (Pearson Education Limited, Harlow, UK, 2014), p. 564.
[35] M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, "Dramatic Size Reduction of Waveguide Bends on a Micron-Scale Silicon Photonic Platform," Optics Express 21, 17814-17823 (2013).
[36] M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, and T. Aalto, "The Euler Bend: Paving the Way for High-Density Integration on Micron-Scale Semiconductor Platforms," in Silicon Photonics IX(International Society for Optics and Photonics2014), p. 899004.
[37] M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, and T. Aalto, "Low-Loss Spiral Waveguides with Ultra-Small Footprint on a Micron Scale Soi Platform," in Silicon Photonics IX(International Society for Optics and Photonics2014), p. 899005.
[38] C. Gallicchio, and A. Micheli, "Echo State Property of Deep Reservoir Computing Networks," Cognitive Computation 9, 337-350 (2017).
[39] C. Gallicchio, A. Micheli, and L. Pedrelli, "Deep Reservoir Computing: A Critical Experimental Analysis," Neurocomputing 268, 87-99 (2017).
[40] C. Gallicchio, A. Micheli, and L. Pedrelli, "Design of Deep Echo State Networks," Neural Networks 108, 33-47 (2018).
[41] Q. Ma, L. Shen, and G. W. Cottrell, "Deep-Esn: A Multiple Projection-Encoding Hierarchical Reservoir Computing Framework," arXiv preprint arXiv:1711.05255 (2017).
指導教授 陳啟昌 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明